Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T05:51:28.792Z Has data issue: false hasContentIssue false

Quantification of illite and smectite and their layer charges in sandstones and shales from shallow burial depth

Published online by Cambridge University Press:  09 July 2018

J. Środoń*
Affiliation:
Institute of Geological Sciences PAN, Senacka 1, 31002 Kraków, Poland
*

Abstract

Precise measurement of the content and the layer charge of illite and smectite is an important aspect of the mineralogical calibration of geophysical well logs and of the evaluation of mechanical and chemical properties of sedimentary rocks. Ate chnique for obtaining such measurements was developed during mineralogical studies of the Miocene clastic rocks from the Carpathian Foredeep. X-ray diffraction (XRD), chemical, cation exchange capacity (CEC), H2O sorption, and ethylene glycol monoethyl ether (EGME) sorption data were obtained for 65 samples of sandstones, shales and carbonates. The illite + smectite sum, involving all detected 2:1 minerals (smectite, illite-smectite, illite, glauconite and muscovite) was measured by XRD. The content of the illitic component was evaluated separately using % K2O and accounting for % K2O in K-feldspar. The content of the smectitic component was estimated from EGME retention using the reference data for a smectite standard, and from CEC assuming the smectitic layer charge of 0.41/O10(OH)2 (Środoń et al., in press). All these measurements produced very consistent results.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bardon, C., Bieber, M.T., Cuiec, L., Jacquin, C., Courbot, A., Deneuville, G., Simon, J.M., Voirin, J.M., Espy, M., Nectoux, A. & Pellerin, A. (1983) Recommandations pour la determination experimentale de la capacité d'échange de cations des milieux argileux. Revue de V Institut Francais du Pétrole, 38,621-626.Google Scholar
Bergaya, F., Theng, B.K.G. & Lagaly, G. (2006) Handbook of Clay Science, Elsevier, Amsterdam, 1224 pp.Google Scholar
Dudek, T. (2001) Diagenetic evolution of Mite/smectite in the Miocene shales from the Przemyśl area (Carpathian Foredeep). PhD thesis, Institute of Geological Sciences PAN, Krakow, Poland.Google Scholar
Dudek, T., Środoń, J., Eberl, D.D., Elsass, F. & Uhlik, P. (2002) Thickness distribution of illite crystals in shales. I: X-ray diffraction vs. high-resolution transmission electron microscopy measurements. Clays and Clay Minerals, 50, 562577.Google Scholar
Dziadzio, P. (2000) Sekwencje depozycyjne w utworach badenu i sarmatu w SE części zapadliska przedkarpackiego. Przeglgd Geologiczny, 48, 11241138 (in Polish).Google Scholar
Eberl, D.D., Nuesch, R., Šucha, V. & Tsipursky, S. (1998) Measurement of fundamental particle thicknesses by X-ray diffraction using PVP-10 intercalation. Clays and Clay Minerals, 46, 8997.CrossRefGoogle Scholar
Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Formoso, M.L.L., Galán, E., Kogure, T. & Stanjek, H. (2006) Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour 1'Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clay Minerals, 41, 863877.Google Scholar
Jackson, M.X. (1975) Soil Chemical Analysis - Advanced Course. Published by the author, Madison, Wisconsin, USA.Google Scholar
Kuberska, M., Kozlowska, A. & Maliszewska, A. (2008) Spoiwa piaskowców miocenu zapadliska przedkar-packiego w jego polskiej i ukraińskiej części. I Polish Geological Congress, Krakow, Poland, Abstracts, p. 61 (in Polish).Google Scholar
Moore, D. M. & Reynolds, R. C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford-New York, 378 pp.Google Scholar
Mystkowski, K., Środoń, J. & McCarty, D.K. (2002) Application of evolutionary programming to automatic XRD quantitative analysis of clay-bearing rocks. The Clay Minerals Society 39th Annual Meeting, Boulder, Colorado, Abstracts with Programs. Google Scholar
Omotoso, O., McCarty, D.K., Hillier, S. & Kleeberg, R. (2006) Some successful approaches to quantitative mineral analysis as revealed by the 3rd Reynolds Cup contest. Clays and Clay Minerals, 54, 748760.Google Scholar
Orsini, L. & Remy, J-C. (1976) Utilisation du chlorure de cobaltihexammine pour la determination simultanee de la capacite d'echange et des bases echangeables des sols. Science du Sol, 4, 269275.Google Scholar
Parachoniak, W. (1962) Miocene pyroclastic horizons of the Carpathian Foredeep in Poland. Prace Geologiczne Komisji Nauk Geologicznych PAN, Oddzial w Krakowie, 11, 777 (in Polish).Google Scholar
Ratajczak, T., Górniak, K., Bahranowski, K. & Szydlak, T. (1993) Clay minerals as evidence of volcanic activity during the Miocene sedimentation in the NE part of the Carpathian Foredeep (Poland). Geologica Carpathica - Clays, 2, 8192.Google Scholar
Środoń, J. (1981) X-ray identification of randomly interstratified illite/smectite in mixtures with discrete illite. Clay Minerals, 16, 297304.Google Scholar
Środoń, J. (1984) Illite/smectite in low-temperature diagenesis: data from the Miocene of the Carpathian Foredeep. Clay Minerals, 19, 205215.Google Scholar
Środoń, J. & McCarty, D.K. (2008) Surface area and layer charge of smectite from CEC and EGME/H2O retention measurements. Clays and Clay Minerals, 56, 155174.Google Scholar
Środoń, J., Elsass, F., McHardy, W.J. & Morgan, D.J. (1992) Chemistry of illite-smectite inferred from TEM measurements of fundamental particles. Clay Minerals, 27, 137158.Google Scholar
Środoń, J., Drits, V.A., McCarty, D.K., Hsieh, J.C.C. & Eberl, D.D. (2001) Quantitative XRD analysis of clay-rich rocks from random preparations. Clays and Clay Minerals, 49, 514528.Google Scholar
Środoń, J., Zeelmaekers, E. & Derkowski, A. (2009) The charge of component layers of illite-smectite in bentonites and the nature of end-member illite. Clays and Clay Minerals, 57, 649671.Google Scholar
Tiller, K.G. & Smith, L.H. (1990) Limitations of EGME retention to estimate the surface area of soils. Australian Journal of Soil Research, 28, 126.Google Scholar
Zorski, T., Palka, K. & Środoń, J. (2000) Geofizyczne i mineralogiczne aspekty identyfikacji składu miner-alnego w cienkowarstwowych kompleksach piaszc-zysto-ilastych na podstawie jadrowych profilowań otworów. Materiały Konferencji GEOPETROL 2000, Zakopane 25-28.09.2000. Prace Instytutu Górnictwa Naftowego i Gazownictwa, 110, 265269 (in Polish).Google Scholar