Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T05:51:59.650Z Has data issue: false hasContentIssue false

Qualitative and quantitative mineralogical composition of the Rupelian Boom Clay in Belgium

Published online by Cambridge University Press:  02 January 2018

E. Zeelmaekers*
Affiliation:
Laboratory of Applied Geology and Mineralogy, University of Leuven, Celestijnenlaan 200E, 3001 Leuven-Heverlee, Belgium Presently at Shell International Exploration & Production, The Hague, The Netherlands
M. Honty
Affiliation:
Institute of Environment, Health and Safety, Belgian Nuclear Research Centre (SCK·CEN), Boeretang 200, 2400 Mol, Belgium
A. Derkowski
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Kraków, ul. Senacka 1, PL-31002 Kraków, Poland
J. Środoń
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Kraków, ul. Senacka 1, PL-31002 Kraków, Poland
M. De Craen
Affiliation:
Institute of Environment, Health and Safety, Belgian Nuclear Research Centre (SCK·CEN), Boeretang 200, 2400 Mol, Belgium
N. Vandenberghe
Affiliation:
Laboratory of Applied Geology and Mineralogy, University of Leuven, Celestijnenlaan 200E, 3001 Leuven-Heverlee, Belgium
R. Adriaens
Affiliation:
Laboratory of Applied Geology and Mineralogy, University of Leuven, Celestijnenlaan 200E, 3001 Leuven-Heverlee, Belgium
K. Ufer
Affiliation:
BGR/LBEG, Stilleweg 2, 30655 Hannover, Germany
L. Wouters
Affiliation:
NIRAS-ONDRAF, Kunstlaan 14, 1210 Brussels, Belgium
*

Abstract

The Boom Clay Formation of early Oligocene age, which occurs underground in northern Belgium, has been studied intensively for decades as a potential host rock for the disposal of nuclear waste. The goal of the present study is to determine a reference composition for the Boom Clay using both literature methods and methods developed during this work. The study was carried out on 20 samples, representative of the lithological variability of the formation. The bulk-rock composition was obtained by X-ray diffraction using a combined full-pattern summation and singlepeak quantification method. Siliciclastics vary from 27 to 72 wt.%, clay minerals with 25–71 wt.% micas, 0–4 wt.% carbonates, 2–4 wt.% accessory minerals (mainly pyrite and anatase) and 0.5–3.5 wt.% organic matter. This bulk-rock composition was validated independently by majorelement chemical analysis. The detailed composition of the clay-sized fraction was determined by modelling of the oriented X-ray diffraction patterns, using a larger sigma star (σ*) value for discrete smectite than for the other clay minerals. The <2 μm clay mineralogy of the Boom Clay is qualitatively homogeneous; it contains 14–25 wt.% illite, 19–39 wt.% smectite, 19–42 wt.% randomly interstratified illite-smectite with about 65% illite layers, 5–12 wt.% kaolinite, 4–17 wt.% randomly interstratified kaolinite-smectite and 2–7 wt.% chloritic minerals (chlorite, “defective” chlorite and interstratified chlorite-smectite). All modelled clay mineral proportions were verified independently using major-element chemistry and cation exchange capacity measurements. Bulkrock and clay mineral analysis results were combined to obtain the overall detailed quantitative composition of the Boom Clay Formation.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammann, L., Bergaya, F. & Lagaly, G. (2005) Determination of the cation exchange capacity of clays with copper complexes revisited. Clay Minerals, 40, 441453.Google Scholar
Beaucaire, C., Pitsch, H., Toulhoat, P., Motellier, S. & Louvat, D. (2000) Regional fluid charcterisation and modelling of water-rock equilibria in the Boom clay Formation and in the Rupelian aquifer at Mol, Belgium. Applied Chemistry, 15, 667686.Google Scholar
Bonne, A. (1989) De Mineralogische samenstelling van de Boomse klei. Report SCK·CEN, NCS89/46/ D6265/GV/MVG/N–83.Google Scholar
Bouchet, A. & Rassineux, F. (1993) Archimède – Argile. Etude morphologique et minéralogique de trois échantillon d’argile provenant du site de Mol (Belgique). Rapport BRGM-ANDRA no. 696–RP–BRG–93–003.Google Scholar
Claret, F., Sakharov, B.A., Drits, V.A., Velde, B., Meunier, A., Griffault, L. & Lanson, B. (2004) Clay minerals in the Meuse-Haute Marne underground laboratory (France): possible influence of organic matter on clay mineral evolution. Clays and Clay Minerals, 52, 515535.Google Scholar
Decleer, J. (1983) Studie van de relaties tussen chemische, fysische en mineralogische kenmerken van de Boomse Klei en van de verhittingsprodukten. PhD thesis, University of Leuven (in Dutch).Google Scholar
Deniau, I., Devol-Brown, I., Derenne, S., Behar, F. & Largeau, C. (2008) Comparison of the bulk geochemical features and thermal reactivity of kerogens from Mol (Boom Clay), Bure (Callovo-Oxfordian argillite) and Tournemire (Toarcianshales) underground research laboratories. Science of the Total Environment, 389, 475485.Google Scholar
Derkowski, A., McCarty, D.K., Środoń, J. & Eberl, D.D. (2008) BestRock - mineralogy, chemistry and mineral surface property optimization to calculate petrophysical properties of the mineral matrix. Mineralogia – Special Papers, 33, 53.Google Scholar
Dohrmann, R., Rüping, K.B., Kleber, M., Ufer, K. & Jahn, R. (2009) Variation of preferred orientation in oriented clay mounts as a result of sample preparation and composition. Clays and Clay Minerals, 57, 686694.Google Scholar
Dohrmann, R., Genske, D., Karnland, O., Kaufhold, S., Kiviranta, L., Olsson, S., Plötze, M., Sandén, T., Sellin, P., Svensson, D. & Valter, M. (2012). Interlaboratory CEC and exchangeable cation study of bentonite buffer materials: I. Cu(II)-triethylenetetramine method. Clays and Clay Minerals, 60, 162175.Google Scholar
Drits, V.A. & Sakharov, B.A. (1976) X-ray Structural Analysis of Mixed-Layer Minerals. Nauka, Moscow. (in Russian).Google Scholar
Eberl, D.D., Środoń, J., Lee, M., Nadeau, P.H. & Northrop, H.R. (1987) Sericite from the Silverton caldera, Colorado: Correlation among structure, composition, origin and particle thickness. American Mineralogist, 72, 914934.Google Scholar
Ferrage, E., Lanson, B., Sakharov, B.A., Geoffroy, N., Jacquot, E. & Drits, V.A. (2007) Investigation of dioctahedral smectite hydration properties by modelling of X-ray diffraction profiles: Influence of layer charge and charge location. American Mineralogist, 92, 17311743.Google Scholar
Goemaere, E. (1991) Révision critique de l’analyse par diffraction des rayons X de matériaux at mineraux argileux: Applications àquelques problèmes géologiques et pédologiques àintérêt géotechique; Fascicule III: L’Argile de Boom, Le schistes bitumeneux du Toarcien. PhD thesis, Université de Liège, Belgique.Google Scholar
Griffault, L., Merceron, T., Mossmann, J.R., Neerdael, B., De Cannière, P., Beaucaire, C., Daumas, S., Bianchi, A. & Christen, R. (1996) Acquisition et régulation de la chimie des eaux en milieu argileux pour le project de stockage de déchets radioactifs en formation géologique. Project Archimède argile, Rapport final, EUR 17454 FR.Google Scholar
Heremans, R., Barbreau, A. & Bourke, P. (1980) Thermal aspects associated with the disposal of waste in deep geological formations. Pp. 468–487 in: Radioactive Waste Management and Disposal (R. Simon & S. Orlowski, editors). Proceedings of the First European Community Conference, Luxembourg, May 20–23, Harwood Academic Publishers, Newark, New Jersey, USA.Google Scholar
Honty, M. (2010) CEC of the Boom Clay – a review. External Report of the Belgian Nuclear Research Centre, Mol, Belgium: SCK·CEN–ER–134, 26 p.Google Scholar
Ignasiak, T.M., Zhang, Q., Kratochvil, B., Maitra, C., Montgomery, D.S. & Strausz, O.P. (1985) Chemical and Mineral Characterization of the Bitumen-Free Athabasca Oil Sands Related to the Bitumen Concentration in the Sand Tailings from Syncrude Batch Extraction Test. AOSTRA Journal of Research, 2, 2135.Google Scholar
Jackson, M.L. (1975) Soil Chemical Analysis – Advanced Course, 2nd edition. Published by the author, Madison, Wisconsin, USA, 895 pp.Google Scholar
Kleeberg, R. (2005) Results of the second Reynolds Cup contest in quantitative mineral analysis. International Union of Crystallography. Commission on Powder Diffraction Newsletter, 30, 2224.Google Scholar
Laenen, B. (1997) The geochemical signature of relative sea-level cycles recognized in the Boom Clay. PhD Thesis, K.U. Leuven, Belgium.Google Scholar
Laenen, B. (1998) The geochemical signature of relative sea-level cycles recognised in the Boom Clay. University Pres s Leuven , Aardkundige Mededelingen, 9, 6182.Google Scholar
Laenen, B. & De Craen, M. (2004) Eogenetic siderite as an indicator for fluctuations in sedimentation rate in the Oligocene Boom Clay Formation (Belgium). Sedimentary Geology, 163, 165174.Google Scholar
Lindgreen, H., Drits, V.A., Sakharov, B.A., Salyn, A.L., Wrang, P. & Dainyak, L.G. (2000) Illite-smectite structural changes during metamorphism in black Cambrian Alum shales from the Baltic area. American Mineralogist, 85, 12231238.Google Scholar
Lindgreen, H., Drits, V.A., Sakharov, B.A., Jakobsen, H.J., Salyn, A.L., Dainyak, L.G. & Kroyer, H. (2002) The structure and diagenetic transformation of illitesmectite and chlorite-smectite from North Sea Cretaceous-Tertiary chalk. Clay Minerals, 37, 429450.Google Scholar
McCarty, D.K., Theologou, P.N., Fischer, T.B., Derkowski, A., Stokes, M.R., & Ollila, A. (2015) Mineral-chemistry quantification and petrophysical calibration for multi-mineral evaluations: The BestrockT Approach. AAPG Bulletin. (Submitted).Google Scholar
Meier, L. & Kahr, G. (1999) Determination of cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine. Clays and Clay Minerals, 27, 417422.Google Scholar
Merceron, T., Mossmann, J.R., Neerdael, B., De Cannière, P., Beaucaire, C., Daumas, S., Bianchi, A. & Christen, R. (1993) Acquisition et régulation de la chimie des eaux en milieu argileux. Projet Archimede-Argile, Rapport d’avancement semestriel no. 3 – ANDRA, 696 RP BRG 93–001.Google Scholar
Moore, D.M. & Reynolds, R.C. Jr., (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford-New York, 378 pp.Google Scholar
Omotoso, O., McCarty, D.K., Hillier, S. & Kleeberg, R. (2006) Some successful approaches to quantitative mineral analysis as revealed by the 3rd Reynolds Cup Contest. Clays and Clay Minerals, 54, 748760.Google Scholar
ONDRAF/NIRAS (2013) ONDRAF/NIRAS Research, Development and Demonstration Plan for the geological disposal of high-level and/or long-lived radioactive waste including irradiated fuel if considered as waste. State-of-the-art report as of December 2012. NIROND–TR 2013–12.Google Scholar
Renngarten, N.V., Rateev, M.A., Shutov, V.D. & Drits, V.A. (1978) Lithology and clay mineralogy of sediments from site 337, DSDP Leg 38. Deep Sea Drilling Project Report and Publications, DSDP Supplement to Volumes 38–41.Google Scholar
Reynolds, R.C. (1986) The Lorentz-Polarization factor and preferred orientation in oriented clay aggregates. Clays and Clay Minerals, 34, 359367.Google Scholar
Sakharov, B.A., Lindgreen, H., Salyn, A.L. & Drits, V.A. (1999) Determination of illite-smectite structures using multispecimen X-ray diffraction profile fitting. Clays and Clay Minerals, 47, 555566.CrossRefGoogle Scholar
Sakharov, B.A., Dubinska, E., Bylina, P., Kozubowsk, J.A., Kapron, G. & Frontczak-Baniewicz, M. (2004) Serpentine-smectite interstratified minerals from Lower Silesia (SW Poland). Clays and Clay Minerals, 52, 5565.Google Scholar
Środoń, J. (2009) Quantification of illite and smectite and their layer charges in sandstones and shales from shallow burial depth. Clay Minerals, 44, 421434.Google Scholar
Środoń, J., Drits, V.A., McCarty, D.K., Hsieh, J.C.C. & Eberl, D.D. (2001) Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations. Clays and Clay Minerals, 49, 514528.Google Scholar
Środoń, J. & McCarty, D.K. (2008) Surface area and layer charge of smectite from CEC and EGME/H2Oretention measurements. Clays and Clay Minerals, 56, 155174.Google Scholar
Środoń, J. & Kawiak, T. (2012) Mineral compositional trends and their correlations with petrophysical and well-logging parameters revealed by Quanta + Bestmin analysis: Miocene of the Carpathian Foredeep, Poland. Clays and Clay Minerals, 60, 6375.Google Scholar
Thorez, J. (1976a) Rapport d’ analyse minéralogique: contenu qualitative et semi-quantitatif en minéraux argileux dans l’argile de Boom, au site de Mol (C.E.N.). 325/07/030 MiUL. 19 pp. 10 Fig. (rapport pour SCK–CEN).Google Scholar
Thorez, J. (1976) Practical Identification of Clay Minerals. A Handbook for Students and Teachers in Clay Mineralogy (G. Lelotte, editor). Dison, Belgium, 90 pp.Google Scholar
Ufer, K., Kleeberg, R., Bergmann, J. & Dohrmann, R. (2012) Rietveld refinement of disordered illite-smectite mixed-layered structures by a recursive algorithm. II: Powder-pattern refinement and quantitative phase analysis. Clays and Clay Minerals, 60, 535552.Google Scholar
Vandenberghe, N. (1978) Sedimentology of the Boom Clay (Rupelian) in Belgium. Memoirs of the “Koninklijke Academie voor Wetenschappen, Letteren en Schone Kunsten van Belgie”, Klasse der Wetenschappen, XL, Nr 147, 137 pp.Google Scholar
Vandenberghe, N. & Mertens, J. (2013) Differentiating between tectonic and eustatic signals in the Rupelian Boom Clay cycles (Oligocene, Southern North Sea Basin). Newsletters on Stratigraphy, 46/3, 319–337.Google Scholar
Vandenberghe, N. & Thorez, J. (1985) XRD-onderzoek van de 14 Å componenten in de kleimineralenfraktie van de Boomse klei in de boring te Mol 31W–237. Geological Survey of Belgium, unpublished report, 10 pp.Google Scholar
Vandenberghe, N., Hager, H., van den Bosch, M., Verstraelen, A., Leroi, S., Steurbaut, E., Prüfert, J., & Laga, P. (2001) Stratigraphical correlation by calibrated well logs in the Rupel Group between North Belgium, the Lower-Rhine area in Germany and Southern Limburg and the Achterhoek in The Netherlands. Aardkundige Mededelingen, University Press Leuven, 11, 6984.Google Scholar
Vandenberghe, N., Herman, J. & Steurbaut, E. (2002) Detailed Analysis of the Rupelian Ru-1 Transgressive Surface in the Type Area (Belgium). Pp. 67–83 in: Northern European Cenozoic Stratigraphy (K. Gü rs, editor). Proceedings 8th Biannual Meeting RCNNS/RCNPS. Flintbek, Landesamt für Natur und Umwelt des Landes Schleswig-Holstein, Germany.Google Scholar
Vandenberghe, N., De Craen, M. & Wouters, L. (2014) The Boom Clay geology. From sedimentation to present-day occurrence. A review. Royal Belgian Institute of Natural Sciences, Memoirs of the Geological Survey of Belgium, 60, 76 pp.Google Scholar
Varentsov, I.M., Sakharov, B.A. & Eliseeva, T.G. (1983) Clay components of post middle Jurassic sediments of the southwest Atlantic, Deep Sea Drilling Project, Leg 71: depositional history and authigenic transformations. Deep Sea Drilling Project Report and Publications. DSDP Volume 71Google Scholar
Volckaert, G., Neerdael, B., Manfroy, P. & Lalieux, Ph. (1994) Characteristics of argillaceous rocks. A catalogue of the characteristics of argillaceous rocks studied with respect to radioactive waste disposal issues: Belgium, Canada, France, Germany, Italy, Japan, Spain, Switzerland, United Kingdom and United States. Revision number 1.2–30/06/1994.Google Scholar
Welkenhuysen, K., Vancampenhout, P. & De Ceukelaire, M. (2012) Quasi-3D model van de Formatie van Maldegem, De Groep van Tongeren en de Groep van de Rupel. Geological Survey of Belgium Professional Paper 2012/1, 311, 46 pp.Google Scholar
Wouters, L., Herron, M., Abeels, V., Hagood, M. & Strobet, J. (1999) Innovative application of dual range Fourier transform infrared spectroscopy to analysis of Boom Clay mineralogy. University Press Leuven, Aardkundige Mededelingen, 9, 159168.Google Scholar
Zeelmaekers, E. (2011) Computerized qualitative and quantitative clay mineralogy. Introduction and application to known geological cases. PhD Thesis, K.U. Leuven, Belgium, 397 pp. (https://lirias.kuleuven.be/handle/123456789/306162).Google Scholar
Supplementary material: File

Zeelmaekers et al. supplementary material

Appendix 1

Download Zeelmaekers et al. supplementary material(File)
File 36.9 KB
Supplementary material: File

Zeelmaekers et al. supplementary material

Appendix 2

Download Zeelmaekers et al. supplementary material(File)
File 45.1 KB
Supplementary material: File

Zeelmaekers et al. supplementary material

Appendix 3

Download Zeelmaekers et al. supplementary material(File)
File 41.5 KB
Supplementary material: File

Zeelmaekers et al. supplementary material

Appendix 4

Download Zeelmaekers et al. supplementary material(File)
File 31.7 KB
Supplementary material: File

Zeelmaekers et al. supplementary material

Supplementary Material

Download Zeelmaekers et al. supplementary material(File)
File 361 KB