Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T06:33:48.099Z Has data issue: false hasContentIssue false

Practical determination of allophane and synthetic alumina and iron oxide gels by X-ray diffraction

Published online by Cambridge University Press:  09 July 2018

M. D. Ruiz Cruz
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, 29071 Málaga, Spain
L. Moreno Real
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, 29071 Málaga, Spain

Abstract

X-ray diffraction methods are effective and practical for the quantitative analysis of the often forgotten amorphous material phase in sediments. The method reported is simple, employing normal oriented samples, and quartz or fluorite as a diluent. However, special care must be taken to prepare the samples properly, to ensure optimum conditions for diffraction, and to measure accurately the scattering bands.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bardossy, G. (1965) Determination des constituants amorphes dans les roches par les methodes diffractometriques. C.R. Acad. Sci. Paris,, 260, 110–118.Google Scholar
Brindley, G.W. (1980) Quantitative X-ray mineral analysis of clays. Pp. 411^38 in: Crystal Structures of Clay Minerals and their Identification(Brindley, G. W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Brown, G. (1980) Associated minerals. Pp. 361^10 in: Crystal Structures of Clay Minerals and their Identification. (Brindley, G. W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Crespo, A. (1975) Etude par diffractometrie X de materiaux amorphes et partiellement cristallises.These, Univ. Pau.Google Scholar
Follet, E.A.C., McHardy, W.J., Mitchell, B.D. & Smith, B.F.L. (1965) Chemical dissolution techniques in the study of clays: Part I. Clay Miner., 6, 23–34.Google Scholar
Hashimoto, I. & Jackson, M.L. (1960) Rapid dissolution of allophane and kaolinite-halloysite after dehydration. Clays Clay Miner., 7, 102–113.Google Scholar
Islam, A.K.M.E. & Lotse, E.G. (1986) Quantitative mineralogical analysis of some Bangladesh soils with X-ray, ion exchange and selective dissolution techniques. Clay Miner., 21, 3142.Google Scholar
Klug, H.P. & Alexander, L.E. (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. John Wiley & Sons, New York.Google Scholar
Lapaquellerie, Y. (1987) Utilisation de la diffractometrie X pour la determination des constituants amorphes dans les sediments marins (silice biogene et cendres volcaniques) Clay Miner., 22, 457–463.CrossRefGoogle Scholar
Mackenzie, R.C. (editor) (1970) Differential Thermal Analysis, Vol. 1. Academic Press, London.Google Scholar
Smith, B.F.L. & Mithcell, B.D. (1984) Characterization of X-ray amorphous material in a Scottish soil by selective chemical techniques. Clay Miner., 19, 734–744.Google Scholar