Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T15:03:11.012Z Has data issue: false hasContentIssue false

Pore-lining sudoite in Rotliegend sandstones from the eastern part of the Southern Permian Basin

Published online by Cambridge University Press:  27 February 2018

J . Biernacka*
Affiliation:
Institute of Geology, University of Poznan, Makow Polnych 16, 61-606 Poznan, Poland
*

Abstract

Sudoite, an aluminium-rich di-trioctahedral chlorite, is known primarily from highgrade diagenetic/ low-temperature metamorphic Al-rich rocks and from hydrothermal deposits in Alrich terrains. This contribution reports a rare occurrence of pore-lining sudoite in Permian red beds from the eastern part of the Southern Permian Basin. Sudoite is a ubiquitous mineral in aeolian sandstones of the Eastern Erg, a large dune field buried in the subsurface of the Fore-Sudetic Monocline, SW Poland. Sudoite crystals are arranged in a honeycomb texture and often associated with high-porosity intervals. It is concluded that sudoite crystallized at the expense of early diagenetic dioctahedral smectite at a temperature lower than 180°C under the influence of hot, Mgrich and K-poor fluids, which migrated from a basement and/or deep part of the basin upward through permeable aeolian sandstones and mixed with colder pore solutions. Tosudite was a likely intermediate phase in the smectite to sudoite conversion.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajdukiewicz, J.M., Nicholson, P.H. & Esch, W.L. (2010) Prediction of deep reservoir quality using early diagenetic process models in the Jurassic Norphlet Formation, Gulf of Mexico. AAPG Bulletin, 94, 1189–1227.Google Scholar
Anceau, A. (1992) Sudoite in some Visean (Lowers Carboniferous) K-bentonites from Belgium. Clay Minerals, 27, 283–292.Google Scholar
Anjos, S.M.C., De Ros, L.F. & Silva, C.M.A. (2003) Chlorite authigenesis and porosity preservation in the Upper Cretaceous marine sandstones of the Santos Basin, offshore eastern Brazil. International Association of Sedimentologists Special Publication, 34, 291–316.Google Scholar
Bailey, S.W. & Lister, J.S. (1989) Structures, compositions, and X-ray diffraction identification of dioctahedral chlorites. Clays and Clay Minerals, 37, 193–202.Google Scholar
Bailey, S.W. & Tyler, S.A. (1960) Clay minerals associated with the Lake Superior iron ores. Economic Geology, 55, 150–175.Google Scholar
Barker, Ch.E. & Pawlewicz, M.J. (1986) The correlation of vitrinite reflectance with maximum temperature in humic organic matter. Lecture Notes in Earth Sciences, 5, 79–93.Google Scholar
Biernacka, J., Leśniak, G. & Buniak, A. (2006) Wpływ kompakcji i cementacji na właściwości zbiornikowe piaskowcόw czerwonego spa˛gowca z obszaru monokliny przedsudeckiej. Prace Instytutu Nafty i Gazu, 134, 1–67.Google Scholar
Bloch, S., Lander, R.H. & Bonnell, L. (2002) Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. AAPG Bulletin, 86, 301–328.Google Scholar
Blundell, D.J., Alderton, D.H.M., Karnkowski, P.H., Oszczepalski, S. & Kucha, H. (2003) Copper mineralization of the Polish Kupferschiefer: a proposed basement fault-fracture system of fluid flow. Economic Geology, 98, 1487–1495.Google Scholar
Bourdelle, F., Parra, T., Chopin, C. & Beyssac, O. (2013) A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions. Contributions to Mineralogy and Petrology, 165, 723–735.Google Scholar
Bylina, P. (2006) Low-grade metamorphism of Permian mafic rocks from the Gorzόw Wielkopolski Block (Fore-Sudetic Monocline, SW Poland): Age and mechanism. Mineralogia Polonica, 37, 3–50.Google Scholar
Chang, H.K., Mackenzie, F.T. & Schoonmaker, J. (1986) Comparisons between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian offshore basins. Clays and Clay Minerals, 34, 407–423.Google Scholar
Daniels, E.J. & Altaner, S.P. (1990) Clay mineral authigenesis in coal and shale from the Anthracite region, Pennsylvania. American Mineralogist, 75, 825–839.Google Scholar
Dixon, S.A., Summers, D.M. & Surdam, R.C. (1989) Diagenesis and preservation of porosity in Norphlet Formation (Upper Jurassic), southern Alabama. AAPG Bulletin, 73, 707–728.Google Scholar
Doornenbal, J.C. & Stevenson, A.G. (Eds.) (2010) Petroleum Geological Atlas of the Southern Permian Basin Area, EAGE Publications b.v. (Houten).Google Scholar
Dubińska, E., Bylina, P., Bagiński, B., Kaproń, G. & Kozłowski, A. (2004) Geochemistry and mineralogy of Rotliegend metavolcanic mafic rocks from Poland: pervasive low-grade metamorphism versus parent rock signature. Pp. 393–413 in: Permo- Carboniferous Magmatism and Rifting in Europe (M. Wilson, E.-R. Neumann, G.R Davies, M.J. Timmerman & M. Heeremans, editors). Geological Society Special Publication, 223.Google Scholar
Eberl, D. (1978) Reaction series for dioctahedral smectites. Clays and Clay Minerals, 26, 327–340.CrossRefGoogle Scholar
Ehrenberg, S.N. (1993) Preservation of anomalously high porosity in deeply buried sandstones by graincoating chlorite: Examples from the Norwegian continental shelf. AAPG Bulletin, 77, 1260–1286.Google Scholar
Fransolet, A.-M. & Bourguignon, P. (1978) Di/trioctahedral chlorite in quartz veins from the Ardenne, Belgium. Canadian Mineralogist, 16, 365–373.Google Scholar
Fransolet, A.-M. & Schreyer, W. (1984) Sudoite, di/ trioctahedral chlorite: a stable low-temperature phase in the system M.O. Al2O3-SiO2-H2O. Contributions to Mineralogy and Petrology, 86, 409–417.Google Scholar
Gast, R., Dusar, M., Breitkreuz, C., Gaupp, R., Schneider, J.W., Stemmerik, L., Geluk, M., Geibler, M., Kiersnowski, H., Glennie, K., Kabel, S. & Jones, N. (2010) Rotliegend. Pp. 101–121 in: Petroleum Geological Atlas of the Southern Permian Basin Area (J.C. Doornenbal & A.G. Stevenson, editors). EAGE Publications b.v. (Houten).Google Scholar
Gaupp, R., Matter, A., Platt, J., Ramseyer, K. & Walzebuck, J. (1993) Diagenesis and fluid evolution of deeply buried Permian (Rotliegende) gas reservoirs, Northwest Germany. AAPG Bulletin, 77, 1111–1128.Google Scholar
Geibler, M., Breikreuz, C. & Kiersnowski, H. (2008) Late Paleozoic volcanism in the central part of the Southern Permian Basin (NE Germany, W Poland): facies distribution and volcano-topographic hiati. International Journal of Earth Sciences, 97, 973–989.Google Scholar
Glennie, K. (1990) Early Permian – Rotliegend. Pp. 120–152 in: Introduction to the Petroleum Geology of the North Sea (K. Glennie, editor). Blackwell Scientific, Oxford.Google Scholar
Grotek, I. (1998) Thermal maturity of organic matter in the Zechstein deposits of the Polish Lowlands area. [In Polish, English summary]. Prace Państwowego Instytutu Geologicznego, 165, 255–260.Google Scholar
Hayashi, H. & Oinuma, K. (1964) Aluminium chlorite from Kamikita mine, Japan. Clay Science, 2, 22–30.Google Scholar
Heald, M.T. & Larese, R.E. (1974) Influence of coatings on quartz cementation. Journal of Sedimentary Petrology, 44, 1269–1274.Google Scholar
Hillier, S. (1993) Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland. Clays and Clay Minerals, 41, 240–259.Google Scholar
Hiller, S. (1994) Pore-lining chlorites in siliciclastic reservoir sandstones: electron microprobe, SEM and X.D. data, and implications for their origin. Clay Minerals, 29, 665–679.Google Scholar
Hiller, S. (2003) Chlorite in sediments. Pp. 123–127 in: Encyclopedia of Sediments and Sedimentary Rocks (G.V. Middleton, M.J. Church, M. Coniglio, L.A. Hardie & F.J. Longstaffe, editors). Kluwer Academic Publishers, Dordrecht.Google Scholar
Hillier, S. & Velde, B. (1991) Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Minerals, 26, 149–168.Google Scholar
Hillier, S., Fallick, A.E. & Matter, A. (1996) Origin of pore-lining chlorite in the aeolian Rotliegend of northern Germany. Clay Minerals, 31, 153–171.Google Scholar
Hillier, S., Wilson, M.J. & Merriman, R.J. (2006) Clay mineralogy of the Old Red Sandstone and Devonian sedimentary rocks of Wales, Scotland and England. Clay Minerals, 41, 433–471.Google Scholar
Humpreys, B., Smith, S.A. & Strong, G.E. (1989) Authigenic chlorite in Late Triassic sandstones from the Central Graben, North Sea. Clay Minerals, 24, 427–444.Google Scholar
Jackowicz, E. (1994) Permian volcanic rocks from the northern part of the Fore-Sudetic Monocline. [In Polish, English summary]. Prace Państwowego Instytutu Geologicznego, 145, 1–47.Google Scholar
Janks, J.S., Yusas, M.R. & Hall, C.M. (1992) Clay mineralogy of an interbedded sandstone, dolomite, and anhydrite: The Permian Yates Formation, Winkler County, Texas. SEPM Special Publication, 47, 143–157.Google Scholar
Jowett, E.C. (1986) Genesis of Kupferschiefer Cu-Ag deposits by convective flow of Rotliegendes brines during Triassic rifting. Economic Geology, 81, 1823–1837.Google Scholar
Karnkowski, P.H. (1999) Origin and evolution of the Polish Rotliegend Basin. Polish Geological Institute Special Papers, 3, 1–93.Google Scholar
Kiersnowski, H. (1997) Depositional development of the Polish Upper Rotliegend Basin and evolution of its sediments source areas. Geological Quarterly, 41, 433–456.Google Scholar
Kiersnowski, H. & Buniak, A. (2006) Evolution of the Rotliegend Basin of northwestern Poland. Geological Quarterly, 50, 119–138.Google Scholar
Kiersnowski, H., Peryt, T.M., Buniak, A. & Mikołajewski, Z. (2010a) From the intra-desert ridges to the marine carbonate island chain: middle to late Permian (Upper Rotliegend-Lower Zechstein) of the Wolsztyn-Pogorzela high, west Poland. Geological Journal, 44, 319–335.Google Scholar
Kiersnowski, H., Buniak, A., Kuberska, M. & Srokowska- Okońska, A. (2010b) Tight gas accumulations in Rotliegend sandstones of Poland. [In Polish, English summary]. Przegla˛d Geologiczny, 58, 335–346.Google Scholar
Kloprogge, J.T., Komarneni, S. & Amonette, J.E. (1999) Synthesis of smectite clay minerals: A critical review. Clays and Clay Minerals, 47, 529–554.Google Scholar
Kotarba, M.J., Peryt, T.M., Kosakowski, P. & Wie˛cław, D. (2006) Organic geochemistry, depositional history and hydrocarbon generation modelling of the Upper Permian Kupferschiefer and Zechstein Limestone strata in south-west Poland. Marine and Petroleum Geology, 23, 371–386.CrossRefGoogle Scholar
Kucha, H. & Pawlikowski, M. (1986) Two-brine model of the genesis of strata-bound Zechstein deposits (Kupferschiefer type), Poland. Mineralium Deposita, 21, 70–80.Google Scholar
Kulke, H. (1969) Petrographie und Diagenese des Stubensandsteines (mi tt lerer Keuper) aus Tiefbohrungen im Raum Memmingen (Bayern). Contributions to Mineralogy and Petrology, 20, 135–163.Google Scholar
Lanari, P., Wagner, T. & Vidal, O. (2014) A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system M.O. eO- Al2O3-SiO2-H2O: applications to P.T. sections and geothermometry. Contributions to Mineralogy and Petrology, 167, 968 (doi:10.1007/s00410-014- 0968-8).Google Scholar
Livi, K.J., Ferry, J.M., Veblen, D.R., Frey, M. & Connolly, J.A.D. (2002) Reactions and physical conditions during metamorphism of Liassic aluminous black shales and marls in central Switzerland. European Journal of Mineralogy, 14, 647–672.CrossRefGoogle Scholar
Majorowicz, J., Marek, S. & Znosko, J. (1984) Paleogeothermal gradients by vitrinite reflectance data and their relation to the present geothermal gradient patterns of the Polish Lowlands. Tectonophysics, 103, 141–156.Google Scholar
Maliszewska, A., Kiersnowski, H. & Jackowicz, E. (2003) Lower Rotliegend volcaniclastic rocks at Wielkopolska (Western Poland). [In Polish, English summary]. Prace Pań stwowego Instytutu Geologicznego, 179, 1–59.Google Scholar
Moore, D.M. & Reynolds, R.C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals, 172–183. Oxford University Press, Oxford.Google Scholar
Morrison, S.J. & Parry, W.T.(1986) Dioctahedral corrensite from Permian red beds, Lisbon Valley, Utah. Clays and Clay Minerals, 34, 613–624.Google Scholar
MÜller, G. (1967) Sudoite (“dioktaedrischer Chlorit”, “Al-Chlorit”) im Cornberger Sandstein von Cornberg/Hessen. Contributions to Mineralogy and Petrology, 14, 176–189.Google Scholar
Nemec, W. & Pore˛bski, S.J. (1977) Weissliegendes sandstones: A transition from fluvial-aeolian to shallow-marine sedimentation (Lower Permian of the Fore-Sudetic Monocline). Annales Societatis Geologorum Poloniae, 47, 387–418.Google Scholar
Percival, J.B. & Kodama, H. (1989) Sudoite from Cigar Lake, Saskatchewan. Canadian Mineralogist, 27, 633–641.Google Scholar
Perry, E.A. & Hower, J. (1970) Burial diagenesis of Gulf Coast politic sediments. Clays and Clay Minerals, 18, 165–177.Google Scholar
Pieczka, A., Buniak, A., Majka, J. & Harryson, H. (2011) Si-deficient foitite with [4]Al and [4]B from the ‘Ługi- 1’ borehole, southwestern Poland. Journal of Geosciences, 56, 389–398.Google Scholar
Pittman, E.D., Larese, R.E. & Heald, M.T. (1992) Clay coats: occurrence and relevance to preservation of porosity in sandstones. SEPM Special Publication, 47, 241–264.Google Scholar
Platt, J.D. (1993) Controls on clay mineral distribution and chemistry in the Early Permian Rotliegend of Germany. Clay Minerals, 28, 393–416.Google Scholar
Pokorski, J. (1981) Formal lithostratigraphic subdivision proposed for the Rotliegendes of the Polish Lowlands. [In Polish, English summary]. Kwartalnik Geologiczny, 25, 59–66.Google Scholar
Pokorski, J. (1988) Palaeotectonic maps of the Rotliegend in Poland. [In Polish, English summary]. Kwartalnik Geologiczny, 32, 15–32.Google Scholar
Reynolds, R.C. & Reynolds, R.C. (1996) Newmod-for- Winows version 2TM. The calculation of onedimensional X-ray diffraction patterns of mixedlayered clay minerals. R.C. Reynolds, 8 Brook Road, Hanover, N., USA.Google Scholar
Robin, V., Beaufort, D., Sardini, P., Tertre, E., Decostes, M. & Regnault, O. (2013) Authigenic smectite in the Paleogene sandy sediments of the Chu-Saryssu Basin (Kazakhstan). Abstract I. 318 in: Abstracts – XV International Clay Conference, Brazil.Google Scholar
Ruiz Cruz, M.D. & Sanz de Galdeano, C. (2005) Compositional and structural variation of sudoite from the Betic Cordillera (Spain): A T.M. AEM study. Clays and Clay Minerals, 53, 639–652.Google Scholar
Schultz, L.G. (1963) Clay minerals in Triassic rocks of the Colorado plateau. Geological Survey Bulletin, 1147C, 1–71.Google Scholar
Speczik, S. (1979) Ore mineralization in the basement Carboniferous rocks of the Fore-Sudetic Monocline (SW Poland). [In Polish, English summary]. Geologia Sudetica, 14, 77–124.Google Scholar
Speczik, S. (1985) Metallogeny of pre-Zechstein basement of the Fore-Sudetic Monocline (SW Poland). [In Polish, English summary]. Geologia Sudetica, 20, 37–111.Google Scholar
Speczik, S. & Kozłowski, A. (1987) Fluid inclusion study of epigenetic veinlets from the Carboniferous rocks of the Fore-Sudetic Monocline (southwest Poland). Chemical Geology, 61, 287–298.Google Scholar
Środoń, J. (1999) Nature of mixed-layer clays and mechanisms of their formation and alteration. Annual Review in Earth and Planetary Science, 27, 19–53.Google Scholar
Środoń, J. (2007) Illitization of smectite and history of sedimentary basins. Pp. 74–82 in: Proceedings of the 11th, E.R.CLAY Conference. Aveiro, Portugal.Google Scholar
Szewczyk, J. & Gientka, D. (2009) Terrestrial heat flow density in Poland – a new approach. Geological Quarterly, 53, 125–140.Google Scholar
Tosca, N.J. & Masterson, A.L. (2014) Chemical controls on incipient Mg-silicate crystallization at 25°C: Implications for early and late diagenesis. Clay Minerals, 49, 165–194.Google Scholar
Van der Plas, L. & Tobi, A.C. (1965) A chart for judging the reliability of point counting results. American Journal of Science, 261, 87–90.Google Scholar
Van Wees, J.-D., Stephenson, R.A., Ziegler, P.A., Bayer, U., McCann, T., Dadlez, R., Gaupp, R., Narkiewicz, M., Bitzer, F. & Scheck, M. (2000) On the origin of the Southern Permian Basin, Central Europe. Marine and Petroleum Geology, 17, 43–59.Google Scholar
Wiewiόra, A. & Weiss, Z. (1990) Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group. Clay Minerals, 25, 83–92.Google Scholar
Wilson, M.J. (2013) Deer, Howie & Zussman Rock- Forming Minerals. Volume 3C – Sheet Silicates. Clay Minerals, 558–573. The Geological Society, London.Google Scholar
Wodzicki, A. & Piestrzyński, A. (1994) An ore genetic model for the Lubin-Sieroszowice mining district, Poland. Mineralium Deposita, 29, 30–43.Google Scholar
Wyart, J. & Sabatier, G. (1966) Synthe`se hydrothermale de la corrensite. Bulletin du Groupe Français des Argiles, 18, 33–40.Google Scholar
Zhang, X., Lin, C.-M., Cai, Y.-F., Qu, C.-W. & Chen, Z.-Y. (2012) Pore-lining chlorite cements in lacustrinedeltaic sandstones from the Upper Triassic Yanchang Formation, Ordos Basin, China. Journal of Petroleum Geology, 35, 273–290.Google Scholar
Zhou, T. & Phillips, G.N. (1994) Sudoite in the Archean Witwatersrand Basin. Contributions to Mineralogy and Petrology, 116, 352–359.CrossRefGoogle Scholar
Ziegler, K. (2006) Clay minerals of the Permian Rotliegend Group in the North Sea and adjacent areas. Clay Minerals, 41, 355–393.Google Scholar
Zwingmann, H., Clauer, N. & Gaupp, R. (1999) Structurerelated geochemical (REE) and isotopic (K-Ar, Rb- S. , 18O) characteristics of clay minerals from Rotliegend sandstone reservoirs (Permian, northern Germany). Geochimica et Cosmochimica Acta, 63, 2805–2823.Google Scholar