Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T07:44:59.442Z Has data issue: false hasContentIssue false

Physicochemical properties of talc ore from Pout-Kelle and Memel deposits (central Cameroon)

Published online by Cambridge University Press:  09 July 2018

C. Nkoumbou*
Affiliation:
Equipe de Géologie Economique et Environnementale, Département des Sciences de la Terre, Faculté des Sciences, Université de Yaoundé I, B.P. 812 Yaoundé, Cameroon Laboratoire Environnement et Minéralurgie, Nancy-Université, CNRS, B.P. 40, F-54501 Vandoeuvre-les-Nancy Cedex, France
F. Villieras
Affiliation:
Laboratoire Environnement et Minéralurgie, Nancy-Université, CNRS, B.P. 40, F-54501 Vandoeuvre-les-Nancy Cedex, France
O. Barres
Affiliation:
Laboratoire Environnement et Minéralurgie, Nancy-Université, CNRS, B.P. 40, F-54501 Vandoeuvre-les-Nancy Cedex, France
I. Bihannic
Affiliation:
Laboratoire Environnement et Minéralurgie, Nancy-Université, CNRS, B.P. 40, F-54501 Vandoeuvre-les-Nancy Cedex, France
M. Pelletier
Affiliation:
Laboratoire Environnement et Minéralurgie, Nancy-Université, CNRS, B.P. 40, F-54501 Vandoeuvre-les-Nancy Cedex, France
A. Razafitianamaharavo
Affiliation:
Laboratoire Environnement et Minéralurgie, Nancy-Université, CNRS, B.P. 40, F-54501 Vandoeuvre-les-Nancy Cedex, France
V. Metang
Affiliation:
Equipe de Géologie Economique et Environnementale, Département des Sciences de la Terre, Faculté des Sciences, Université de Yaoundé I, B.P. 812 Yaoundé, Cameroon
C. Yonta Ngoune
Affiliation:
Equipe de Géologie Economique et Environnementale, Département des Sciences de la Terre, Faculté des Sciences, Université de Yaoundé I, B.P. 812 Yaoundé, Cameroon
D. Njopwouo
Affiliation:
Laboratoire de Physico-chimie des Matériaux Minéraux, Département de Chimie Inorganique, Faculté des Sciences, Université de Yaoundé I, B.P. 812, Yaoundé, Cameroon
J. Yvon
Affiliation:
Laboratoire Environnement et Minéralurgie, Nancy-Université, CNRS, B.P. 40, F-54501 Vandoeuvre-les-Nancy Cedex, France

Abstract

Physicochemical properties of representative samples from talc deposits discovered at Pout-Kelle and Memel in Cameroon have been investigated using a variety of techniques. The data allow the study of the mineral crystal-chemistry, chemical and modal compositions, grain size distribution, textures and surface heterogeneity, and morphometric characteristics. As a result, we found that talc (platy or round, Fe-rich) prevails (65–90%) over Cr-chlorite (7–26%), halloysite, chromite, rutile, brucite and magnesite. Chemically, talc ores are made up of SiO2, MgO, Fe2O3 and minor Al2O3. Mode values range from 50 to 55 μm at Memel and from 30 to 90 μm at Pout-Kelle. Specific surface areas measured by BET and t-plot methods range from 1.3 to 2.5 m2/g. The large values of morphometric characteristics are indicative of high crystallinity and platiness. Potential uses of these talc ores in the rubber, plastics and paper industries require beneficiation processes. Interestingly, the Memel deposit and most zones of the Pout-Kelle deposit are free of needle-shaped crystals, an advantage for environmental safety.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aglietti, E.F. (1994) The effect of dry grinding on the structure of talc. Applied Clay Science, 9, 139-147.Google Scholar
Bacchin, P., Bonino, J.-P., Martin, F., Combacau, M., Barthes, P., Petit, S. & Ferret, J. (2006) Surface precoating of talc particles by carboxyl methyl cellulose adsorption: Study of adsorption and consequence on surface properties and settling rate. Colloids and Surfaces: Physicochemical Engineering Aspects, 111, 211219.CrossRefGoogle Scholar
Barrett, P.E., Joyner, L.G. & Halenda, P.P. (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73, 373380.Google Scholar
Bizi, M., Flament, M.P., Leterne, P., Baudet, G. & Gayot, A. (2003) Relation between structural characteristics of talc and its properties as an antisticking agent in the production of tablets. European Journal of Pharmaceutical Sciences, 19, 373379.Google Scholar
Carignan, J., Hild, P., Mevelle, G., Morel, J. & Yeghicheyan, D. (2001) Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostandard Newsletters, 25, 187198.Google Scholar
Carretero, M.I. (2002) Clay minerals and their beneficial effects upon human health. Applied Clay Science, 21, 155163.Google Scholar
Certini, G., Wilson, M.J., Hillier, S.J., Fraser, A.R. & Delbos, E. (2006) Mineral weathering in trachydacitic-derived soils and saprolites involving formation of embryonic halloysite and gibbsite at Mt. Amiata, Central Italy. Geoderma, 133, 173190.Google Scholar
Christidis, G.E., Makri, P. & Perdikatsis, V. (2004) Influence of grinding on the structure and colour properties of talc, bentonite and calcite white fillers. Clay Minerals, 39, 163175.Google Scholar
Christidis, G.E., Dellisanti, F., Valdre, G. & Marki, P. (2005) Structural modifications of smectites mechanically deformed under controlled conditions. Clay Minerals, 40, 511522.Google Scholar
Clerc, L., Ferry, L., Leroy, E. & Lopez-Cuesta, J.M. (2005) Influence of talc physical properties on the fire retarding behaviour of (Etylene-vinyl acetate copolymer/ magnesium hydroxide/talc) composites. Polymer Degradation and Stability, 88, 504511.Google Scholar
de Donato, P., Villiéras, F., Barres, O. & Yvon, J. (1993) Sur la possibilité d’observer les vibrations de valence OD aux dilutions naturelles: apport de la spectrométrie IRTF en réflexion diffuse. Comptes Rendus de l’Académie des Sciences, Paris, 316, 17571762.Google Scholar
de Donato, P., Cheilletz, A., Barres, O. & Yvon, J. (2004) Infrared spectroscopy of OD vibrators in minerals at natural dilution: hydroxyl groups in talc and kaolinite, and structural water in beryl and emerald. Applied Spectroscopy, 58, 521527.Google Scholar
Denac, M., Smit, I. & Musil, V. (2005a) Polypropylene/ talc/SEBS (SEBS-g-MA) composites. Part 1. Structure. Composites Part A, 36, 10941101.Google Scholar
Denac, M., Smit, I. & Musil, V. (2005b) Polypropylene/talc/SEBS (SEBS-g-MA) composites. Part 2. Mechanical properties. Composites Part A, 36, 12821290.Google Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 331364: The Infrared Spectra of Minerals (Farmer, V.C., editor). Monograph 4, Mineralogical Society, London.Google Scholar
Ferrage, E., Martin, F., Micoud, P., Petit, S., de Parseval, P., Beziat, D. & Ferret, J. (2003a) Cation site distribution in clinochlores: a NIR approach. Clay Minerals, 38, 331340.Google Scholar
Ferrage, E., Martin, F., Petit, S., Pejo-Soucaille, S., Micoud, P., Fourty, G., Ferret, J., Salvi, S., de Parseval, P. & Fortune, J.P. (2003b) Evaluation of talc morphology using FTIR and H/D substitution. Clay Minerals, 38, 141150.Google Scholar
Ferrage, E., Seine, G., Gaillot, A.-C., Petit, S., de Parseval Ph., Boudet, A., Lanson, B., Ferret, J. & Martin, F. (2006) Structure of the ﹛001﹜ talc surface as seen by atomic force microscopy: comparison with X-ray and electron diffraction results. European Journal of Mineralogy, 18, 483491.Google Scholar
Frost, R.L. & Kloprogge, J.T. (1999) Infrared emission spectroscopic study of brucite. Spectrochimica Acta Part A, 55, 21952205.Google Scholar
Gamiz, E., Caballero, E., Delgado Rodriguez, M. & Delgado Calvo-Flores, R. (1989) Etude de talcs espagnols à usage pharmaceutique. Composition minéralogique, chimique, propriétés physico-chimiques. Annales Pharmaceutiques françaises, 47, 5361.Google Scholar
Gondim, A.C. & de Loyola, L.C. (2002) Ponta Grossa and Castro zones in Parana talc district, Brazil, ore properties and mineral industry. Boletim Paranaense de Geociencias, 50, 914.Google Scholar
Lappi, S.E., Smith, B. & Franzen, S. (2004) Infrared spectra of H2 16O, H2 18O and D2O in the liquid phase by single-pass attenuated total internal reflection spectroscopy. Spectrochimica Acta Part A, 60, 26112619.Google Scholar
Lee, S.Y. & Kim, S.J. (2002) Adsorption of naphtalene by HDTMA modified kaolinite and halloysite. Applied Clay Science, 22, 5563.Google Scholar
Liipo, J., Lamberg, P., Turunen, J. & Pitkäjärvi, J. (2004) Grain size and liberation of chromite in ground chrome ore from Kemi Mine, Finland. Pp. 10051007 in: Applied Mineralogy: Developments in Science and Technology (Pecchio, M., D'Andrade, F.R., D’agostino, L.Z., Kahn, H., Santagostino, L.M. & Tassinari, M.M.M.L., editors). 2004 ICAM-BR, Sao Paulo.Google Scholar
Martin, F., Micoud, P., Delmotte, C., Le Dred, R., de Parseval, P., Mari, A., Fortune, J.P., Salvi, S., Beziat, D., Grauby, O. & Ferret, J. (1999) The structural formula of talc from Trimouns deposit, Pyrenees, France. The Canadian Mineralogist, 37, 9971006.Google Scholar
Martin, P.J., Wilson, D.I. & Bonnett, P.E. (2004) Rheological study of talc-based paste for extrusiongranulation. Journal of the European Ceramic Society, 24, 31553168.CrossRefGoogle Scholar
Martin, F., Ferrage, E., Petit, S., de Parseval, P., Delmotte, L., Ferret, J., Arseguel, D. & Salvi, S. (2006) Fineprobing the crystal-chemistry of talc by MAS-NMR spectroscopy. European Journal of Mineralogy, 18, 641651.Google Scholar
Michot, L.J., Villiéras, F., François, M., Yvon, J., Le Dred, R. & Cases, J.M. (1994) The structural microscopic hydrophobicity of talc. Langmuir, 10, 37653773.Google Scholar
Moine, B., Fortuné, J.P., Moreau, P. & Viguier, F. (1989) Comparative mineralogy, geochemistry, and conditions of formation of two metasomatic talc and chlorite deposits: Trimouns (Pyrenees, France) and Rabenwald (Eastern Alps, Austria). Economic Geology, 84, 13981516.Google Scholar
Nédélec, A., Minyem, D. & Barbey, P. (1993) High-P —High-T anatexis of archean tonalitic grey gneisses: the Eseka migmatites, Cameroon. Precambrian Research, 62, 191205.Google Scholar
Njopwouo, D. (1984) Minéralogie et Physico-chimie des argiles de Bomkoul et de Balengou (Cameroun). Utilisation dans la polymérisation du styrène et dans le renforcement du caoutchouc naturel. PhD thesis, Etat, Faculty of Science, University of Yaounde, Cameroon.Google Scholar
Njopwouo, D., Roques, G. & Wandji, R. (1987) A contribution to the study of the catalytic action of clays on the polymerization of styrene: I. Characterization of polystyrenes. Clay Minerals, 22, 145156.CrossRefGoogle Scholar
Njopwouo, D., Roques, G. & Wandji, R. (1988) A contribution to the study of the catalytic action of clays on the polymerization of styrene: II. Reaction mechanism. Clay Minerals, 23, 3543.Google Scholar
Nkoumbou, C., Njopwouo, D., Villiéras, F., Njoya, A., Yonta Ngouné, C., Ngo Ndjock, L., Tchoua, F. & Yvon, J. (2006a) Talc indices from Boumnyebel (central Cameroon), physico-chemical characteristics and geochemistry. Journal of African Earth Sciences, 45, 6173.CrossRefGoogle Scholar
Nkoumbou, C., Yonta Ngouné, C., Villiéras, F., Njopwouo, D., Yvon, J., Ekodeck, G.-E. & Tchoua, F.M. (2006b). Découvertes des roches à affinité ophiolitique dans la chaine panafricaine au Cameroun: les talcschistes de Ngoung, Lamal Pougue et Bibodi Lamal. Comptes Rendus Geoscience, 338, 11671175.CrossRefGoogle Scholar
Nkoumbou, C., Villiéras, F., Njopwouo, D., Yonta Ngouné, C., Barrès, O., Pelletier, M., Razafitianaharavo, A. & Yvon, J. (2007) Physicochemical properties of talc ore from three deposits of Lamal Pougue area (Yaounde Pan- African belt, Cameroon), in relation to industrial uses. Applied Clay Science, (in press).Google Scholar
Pelletier, M. (1999) Application de la spectroscopie infrarouge à l’étude de l’organisation de l’eau aux interfaces: Le cas desphyllosilicates 2:1. PhD thesis, INPL, Lorraine, Nancy, France, 375 pp.Google Scholar
Pérez-Maqueda, L.A., Duran, A. & Pérez-Rodriguez, J.L. (2005) Preparation of submicron talc particles by sonication. Applied Clay Science, 28, 245255.Google Scholar
Petit, S., Martin, F., Wiewióra, A., De Parseval, P. & Decarreau, A. (2004) Crystal chemistry of talc: a near infrared (NIR) spectroscopy study. American Mineralogist, 89, 319326.Google Scholar
Pye, K. & Blott, S.J. (2004) Particle size analysis of sediments, soils and related particulate materials for forensic purposes using laser granulometry. Forensic Science International, 144, 1927.CrossRefGoogle ScholarPubMed
Raussell-Colom, J.A., Wiewióra, A. & Matesanz, E. (1991) Relationship between composition and d001 for chlorite. American Mineralogist, 76, 13731379.Google Scholar
Rohl, A.N., Langer, A.M., Selikoff, I.J., Tordoni, A. & Klimentidis, R. (1976) Consumer talcums and powders: mineral and chemical characterization. Journal of Toxicology and Environmental Health, 2, 255284.Google Scholar
Saikia, N.J., Bharali, D.J., Sengupta, P., Bordoloi, D., Goswamee, R.L., Saikia, P.C. & Borthakur, P.C. (2003) Characterization, beneficiation and utilization of a kaolinite clay from Assam, India. Applied Clay Science, 24, 93103.Google Scholar
Sanchez-Soto, P.J., Wiewióra, A., Avilés, M.A., Justo, A., Pérez-Maqueda, L.A., Pérez-Rodriguez, J.L. & Bylina, P. (1997) Talc from Puebla de Lillo, Spain. II. Effect of dry grinding on particle size and shape. Applied Clay Science, 12, 297312.Google Scholar
Shirozu, H. (1985) Infrared spectra of trioctahedral chlorites in relation to chemical composition. Clay Science, 6, 167176.Google Scholar
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A. & Rouquérol, J., Siemieniewska, T. (1985) Reporting physisorption data for gas/solid systems, with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57, 603619.Google Scholar
Singer, A., Zarei, M., Lange, F.M. & Stahr, K. (2004) Halloysite characteristics and formation in the northern Golan Heights. Geoderma, 123, 279295.Google Scholar
Stanton, M.F., Layard, M., Tegeris, A., Miller, E., May, M., Morgan, E. & Smith, A. (1981) Relation of particle dimension to carcinogenicity in amphibole asbestos and other fibrous minerals. Journal of the National Cancer Institute, 67, 965975.Google Scholar
Van der Marel, H.W. & Beutelspacher, H. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures. Elsevier Publishing, Amsterdam, Oxford, New York, 396 pp.Google Scholar
Vedder, W. (1964) Correlations between infrared spectrum and chemical composition of mica. American Mineralogist, 49, 736768.Google Scholar
Villiéras, F. (1993) Etude des modifications des propriétés du talc et de la chlorite par traitement thermique. PhD thesis, E.N. S.G, I.N.P.L., Nancy, France, 248 pp.Google Scholar
Wiewióra, A., Sanchez-Soto, P.J., Aviles, M.A., Justo, A. & Perez-Rodriguez, J.L. (1993) Effect of dry grinding and leaching on polytypic structure of pyrophyllite. Applied Clay Science, 8, 261282.CrossRefGoogle Scholar
Wiewióra, A., Perez-Rodriguez, J.L., Perez-Maqueda, L.A. & Drapala, J. (2003) Particle size distribution in sonicated high- and low-charge vermiculites. Applied Clay Science, 24, 5158.Google Scholar
Wilkins, R.W.T. & Ito, J. (1967) Infrared spectra of some synthetic talcs. American Mineralogist, 52, 16491661.Google Scholar
Yao, X., Tan, S., Huang, Z. & Jiang, D. (2005) Dispersion of talc particles in silica sol. Materials Letters, 59, 100104.Google Scholar
Yvon, J. (1984) Eléments sur les propriétés cristallochimiques, morphologiques et superficielles des minéraux constitutifs des gisements de talc. PhD thesis, INPL, Nancy, 303 pp.Google Scholar
Yvon, J., Baudracco, J., Cases, J.M. & Weiss, J. (1990) Eléments de minéralogie quantitative en microanalyse des argiles. Pp. 473489 in: Matériaux Argileux, Structures, Propriétés et Applications (Decarreau, A., editor). SFMC —GFA, Paris.Google Scholar
Yvon, J., Cases, J.M., Villiéras, F., Michot, L. & Thomas, F. (2002) Les minéraux techniques naturels: connaissance, typologie et propriétés d’usage. Comptes Rendus Geoscience, 334, 717730.Google Scholar
Zhang, M., Hui, Q., Lou, X.-J., Redfern, S.A.T., Salje, E.K.H. & Tarantino, S.C. (2006) Dehydoxylation, proton migration, and structural changes in heated talc: an infrared spectroscopic study. American Mineralogist, 91, 816825.Google Scholar