Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T00:56:16.609Z Has data issue: false hasContentIssue false

Physico-chemical characterization of Cu2+-exchanged sepiolite

Published online by Cambridge University Press:  09 July 2018

A. Corma
Affiliation:
Instituto de Catálisis y Petroleoquímica, CSIC, Serrano 119, 28006 Madrid, Spain
J. Pérez-Pariente
Affiliation:
Instituto de Catálisis y Petroleoquímica, CSIC, Serrano 119, 28006 Madrid, Spain
J. Soria
Affiliation:
Instituto de Catálisis y Petroleoquímica, CSIC, Serrano 119, 28006 Madrid, Spain

Abstract

Copper-sepiolites exchanged at different levels have been studied by ESR, IR, and TG. The results indicate that in the unheated samples the Cu2+ ions are located in octahedral edge positions. After dehydration, the Cu2+ ions occur in two positions with different environments. Some of the Cu2+ ions lose the two molecules of coordinated water in one step, at low dehydration temperatures, and adopt a square pyramidal geometry. Other Cu2+ ions lose the coordination water in two steps, at lower temperature than the natural sepiolite, and adopt a tetrahedral symmetry.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlrichs, J.L., Serna, C.J. & Serratosa, J.M. (1975) Clays Clay Miner. 24, 411.Google Scholar
Barrer, R.M., Mackenzie, N. & Macleod, D.M. (1954) J. Phys. Chem. 58, 568.Google Scholar
Brauner, K. & Pressinger, J. (1956) Tschermaks. Min. Petr. Mitt. 6, 120.Google Scholar
Conesa, J.C. & Soria, J. (1979) J. Chem. Soc. Faraday I 75, 406.Google Scholar
Corma, A., Fornés, V., Mifsud, A. & Pérez-Pariente, J. (1984) Clay Miner. 19, 673.Google Scholar
Hathaway, B.J. & Billing, D.E. (1970) Coordin. Chem. News 5, 143.Google Scholar
Hoffman, S.K. & Goslar, J. (1982) J. Solid St. Chem. 44, 343.Google Scholar
Kokai, Japan (1978) 07592; 30996; 34691.Google Scholar
Lynch, G.F. & Sayer, M. (1974) J. Magn. Res. 15, 514.Google Scholar
McBride, M.B., Pinnavaia, T.J. & Mortland, M.M. (1975) J. Phys. Chem. 79, 2430.Google Scholar
McBride, M.B. (1982) Clays Clay Miner. 30, 200.Google Scholar
Nagy, B. & Bradley, W.F. (1955) Am. Miner. 40, 855.Google Scholar
Nagata, M., Shimoda, S. & Sudo, T. (1974) Clays Clay Miner. 22, 285.Google Scholar
Serna, C.J., Ahlrichs, J.L. & Serratosa, J.M. (1975) Clays Clay Miner. 23, 452.Google Scholar
Serna, C.J. & Fernández Alvarez, T. (1975) An. Quim. 71, 371.Google Scholar
Serna, C.J. & Van Scoyoc, G.E. (1978) Am. Miner. 62, 197.Google Scholar
Turkevich, J., Ono, Y. & Soria, J. (1972) J. Catal. 25, 44.Google Scholar