Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-22T05:58:00.612Z Has data issue: false hasContentIssue false

Physical alteration of antigorite: a Mössbauer spectroscopy, reflectance spectroscopy and TEM study with applications to Mars

Published online by Cambridge University Press:  09 July 2018

J. L. Bishop*
Affiliation:
SETI Institute/NASA-Ames Research Center, 515 N. Whisman Road, Mountain View, CA 94043, USA
M. D. Dyar
Affiliation:
Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
E. C. Sklute
Affiliation:
Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
A. Drief
Affiliation:
Clorox Services Company, 7200 Johnson Drive, Pleasanton, CA 94588, USA
*

Abstract

Physical alteration of magnetite-bearing antigorite grains is investigated in this study using Mössbauer, visible/near-infrared (VNIR) and mid-IR spectroscopy coupled with scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analyses. An expected decrease in grain size with grinding is observed using SEM. The HRTEM images illustrate that the nanophase-sized grains which adhere to larger grains have 7 Å antigorite patterns. Mössbauer spectroscopy shows the presence of antigorite, magnetite and an amorphous phase. Visible/near infrared spectra exhibit features common in serpentine. These spectra also show an increasing continuum slope with grinding, an effect which is characteristic of thin coatings or tiny grains on surfaces. Mid-IR spectra indicate the formation of fine-grained Si-OH and carbonate in these samples with grinding.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aglietti, E.F., Porto Lopez, J.M. & Pereira, E. (1986) Mechanochemical effects in kaolinite grinding. International Journal of Mineral Processing, 16, 125146.CrossRefGoogle Scholar
Bandfield, J.L. & Smith, M.D. (2003) Multiple emission angle surface-atmosphere separations of thermal emission spectrometer data. Icarus, 161, 4765.CrossRefGoogle Scholar
Bandfield, J.L., Hamilton, V.E. & Christensen, P.R. (2000) A global view of Martian surface compositions from MGS-TES. Science, 287, 16261630.CrossRefGoogle Scholar
Bandfield, J.L., Glotch, T.D. & Christensen, P.R. (2003) Spectroscopic identification of carbonate minerals in the Martian dust. Science, 301, 10841087.CrossRefGoogle ScholarPubMed
Bishop, J.L., Pieters, C.M. & Burns, R.G. (1993) Reflectance and Mössbauer spectroscopy of ferrihydrite- montmorillonite assemblages as Mars soil analog materials. Geochimica et Cosmochimica Acta, 57, 45834595.CrossRefGoogle ScholarPubMed
Bishop, J.L., Murad, E. & Dyar, M.D. (2002) The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy. Clay Minerals, 37, 617628.CrossRefGoogle Scholar
Bishop, J.L., Drief, A. & Dyar, M.D. (2003) Physical alteration of Martian dust grains, its influence on detection of clays and identification of aqueous processes on Mars. 6th International Conference on Mars, Abstract #3008.Google Scholar
Bishop, J.L., Murad, E., Lane, M.D. & Mancinelli, R.L. (2004) Multiple techniques for mineral identification on Mars: a study of hydrothermal rocks as potential analogues for astrobiology sites on Mars. Icarus, 169, 331323.Google Scholar
Bowen, L.H., De Grave, E. & Vandenberghe, R.E. (1993) Mössbauer effect studies of magnetic soils and sediments. Pp. 115159 in: Mössbauer Spectroscopy Applied to Magnetism and Materials Science (Long, G.J. & Grandjean, F., editors). Plenum Press, New York.CrossRefGoogle Scholar
Burns, R.G. (1993) Rates and mechanisms of chemical weathering of ferromagnesian silicate minerals on Mars. Geochimica et Cosmochimica Acta, 57, 45554574.CrossRefGoogle Scholar
Burt, D.M. (1989) Iron-rich minerals on Mars: potential sources or sinks for hydrogen and indicators of hydrogen loss over time. 19th Lunar and Planetary Science Conference, 423-432.Google Scholar
Caillaud, J., Proust, D. & Right, D. (2006) Weathering sequences of rock-forming minerals in a serpentinite: influence of microsystems on clay mineralogy. Clays and Clay Minerals, 54, 87100.CrossRefGoogle Scholar
Chamley, H. (1989) Clay Sedimentology. Springer-Verlag, New York.CrossRefGoogle Scholar
Christensen, P.R., Bandfield, J.L., Hamilton, V.E., Ruff, S.W., Kieffer, H.H., Titus, T.N., Malin, M.C., Morris, R.V., Lane, M.D., Clark, R.L., Jakosky, B.M., Mellon, M.T., Pearl, J.C., Conrath, B.J., Smith, M.D., Clancy, R.T., Kuzmin, R.O., Roush, T., Mehall, G.L., Gorelick, N., Bender, K., Murray, K., Dason, S., Greene, E., Silverman, S. & Greenfield, M. (2001) Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation, description and surface science results. Journal of Geophysical Research, 106, 2382323871.CrossRefGoogle Scholar
da Costa, G.M., De Grave, E., Bowen, L.H., Vandenberghe, R.E. & de Bakker, P.M.A. (1994) The center shift in Mössbauer spectra of maghemite and aluminum maghemites. Clays and Clay Minerals, 42, 628633.CrossRefGoogle Scholar
De Grave, E., Persoons, R.M., Vandenberghe, R.E. & de Bakker, P.M.A. (1993) Mössbauer study of the hightemperature phase of Co-substituted magnetites, CoxFe3-xO4. I. x =0.04. Physical Review, B47, 58815893.CrossRefGoogle Scholar
Drief, A. & Nieto, F. (1999) The effect of dry grinding on antigorite from Mulhacen, Spain. Clays and Clay Minerals, 47, 417424.CrossRefGoogle Scholar
Fischer, E. & Pieters, C.M. (1993) The continuum slope of Mars: bi-directional reflectance investigations and applications to Olympus Mons. Icarus, 102, 185202.CrossRefGoogle Scholar
Halavay, J., Jónás, K., Elek, S. & Inczédy, J. (1977) Characterisation of the particle size and the crystallinity of certain minerals by infrared spectrophotometry and other instrumental methods: I. Investigation of clay minerals. Clays and Clay Minerals, 25, 451456.CrossRefGoogle Scholar
Hargraves, R.B., Collinson, D.W., Arvidson, R.E. & Spitzer, C.R. (1977) The Viking magnetic properties experiment: primary mission results. Journal of Geophysical Research, 82, 45474558.CrossRefGoogle Scholar
King, T.V.V. & Clark, R.N. (1989) Spectral characteristics of chlorites and Mg-serpentines using highresolution reflectance spectroscopy. Journal of Geophysical Research, 94, 1399714008.CrossRefGoogle Scholar
Madsen, M.B., Bertelsen, P., Goetz, W., Binau, C.S., Olsen, M., Folkmann, F., Gunnlaugsson, H.P., Kinch, K.M., Knudsen, J.M., Merrison, J., Nørnberg, P., Squyres, S.W., Yen, A.S., Rademacher, J.D., Gorevan, S., Myrick, T. & Bartlett, P. (2003) Magnetic properties experiments on the Mars Exploration Rover mission. Journal of Geophysical Research, 108, ROV 10, 119.CrossRefGoogle Scholar
Morris, R.V., Lauer, H.V. Jr., Lawson, C.A., Gibson, E.K. Jr., Nace, G.A. & Stewart, C. (1985) Spectral and other physicochemical properties of submicron powders of hematite (α-Fe2O3), maghemite ((γ- Fe2O3), magnetite (Fe3O4), goethite ((γ-FeOOH), and lepidocrocite ((α-FeOOH). Journal of Geophysical Research, 90, 31263144.CrossRefGoogle ScholarPubMed
Murad, E. (1985) The influence of aluminium substitutions on the absorption of gamma-rays in hematite. Physics Letters A, 111, 7982.CrossRefGoogle Scholar
Murad, E. (1999) Clays and clay minerals: what can Mössbauer spectroscopy do to help understand them. 11th International Clay Conference, June, 1997, 207-213.Google Scholar
Murad, E. & Johnston, J.H. (1987) Iron oxides and oxyhydroxides. Pp. 507582 in: Mössbauer Spectroscopy Applied to Inorganic Chemistry (Long, G.J., editor). Plenum Publishing.Google Scholar
Murad, E., Bowen, L.H., Long, G.J. & Quin, T.G. (1988) The influence of crystallinity on magnetic ordering in natural ferrihydrites. Clay Minerals, 23, 161173.CrossRefGoogle Scholar
Mustard, J.F., Murchie, S.L., Pelkey, S.M., Ehlmann, B.L., Milliken, R.E., Grant, J.A., Bibring, J.-P., Poulet, F., Bishop, J.L., Roach, L.A., Seelos, F., Humm, D. & Team, A.T.C.S. (2007) Overview of the hydrated silicate minerals observed on Mars by CRISM. 7th International Mars Conference, Abstract #3240.Google Scholar
O’Hanley, D.S. & Dyar, M.D. (1993) The composition of lizardite 1T and the formation of magnetite in serpentines. American Mineralogist, 78, 391404.Google Scholar
O’Hanley, D.S. & Dyar, M.D. (1998) The composition of chrysotile and its relationship with lizardite. The Canadian Mineralogist, 36, 727739.Google Scholar
Poulet, F., Bibring, J.-P., Mustard, J.F., Gendrin, A., Mangold, N., Langevin, Y., Arvidson, R.E., Gondet, B. & Gomez, C. (2005) Phyllosilicates on Mars and implications for the early Mars history. Nature, 438, 623627.CrossRefGoogle Scholar
Rancourt, D.G. & Ping, J.Y. (1991) Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nuclear Instruments and Methods in Physics Research, B58, 8597.CrossRefGoogle Scholar
Reynolds, R.C. Jr. & Bish, D.L. (2002) The effects of grinding on the structure of a low-defect kaolinite. American Mineralogist, 87, 16261630.CrossRefGoogle Scholar
Vandenberghe, R.E., De Grave, E. & de Bakker, P.M.A. (1994) On the methodology of the analysis of Mössbauer spectra. Hyperfine Interactions, 83, 2949.CrossRefGoogle Scholar
Vandenberghe, R.E., Barrero, C.A., da Costa, G.M., Van San, E., and De Grave, E. (2000) Mössbauer characterization of iron oxides and (oxy)hydroxides: the present state of the art. Hyperfine Interactions, 126, 247259.CrossRefGoogle Scholar
Vandenberghe, R.E., Nedkov, I., Merodiiska, T. & Slakov, L. (2005) Surface oxidation control of nanosized magnetite and Mössbauer measurements. Hyperfine Interactions, 165, 267271.CrossRefGoogle Scholar
Velde, B. (1985) Clay Minerals: A Physico-chemical Explanation of their Occurrence. Elsevier, New York.Google Scholar
Wicks, F.J. & O’Hanley, D.S. (1988) Serpentine minerals: structures and petrology. Pp. 91167 in: Hydrous Phyllosilicates (Bailey, S.W., editor). Reviews in Mineralogy, Vol. 19. Mineralogical Society of America, Washington D.C. CrossRefGoogle Scholar