Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-29T07:23:28.808Z Has data issue: false hasContentIssue false

Pedogenic, palustrine and groundwater dolomite formation in non-marine bentonites (Bavaria, Germany)

Published online by Cambridge University Press:  02 January 2018

M.H. Köster*
Affiliation:
Lehrstuhl für Ingenieurgeologie, Technische Universität München, Arcisstr. 21, 80333 Munich, Germany
H.A. Gilg
Affiliation:
Lehrstuhl für Ingenieurgeologie, Technische Universität München, Arcisstr. 21, 80333 Munich, Germany
*

Abstract

Dolomite and calcite in Bavarian bentonites, southern Germany, were investigated using petrography, field-emission scanning electron microscopy and stable isotope geochemistry to explore the role of authigenic carbonate formation during bentonitization. Pedogenic, palustrine and groundwater carbonates were distinguished on the basis of X-ray diffraction, micromorphological and stable isotope analysis. The δ13CV-PDB and δ18OV-PDB values of dolomite range from −8.0% to −6.1% and −5.4% to −3.4%, respectively. Calcites show a range from −11.9% to −8.1% for carbon and from −9.1% to −6.2% for oxygen. Carbon isotope compositions imply a C3-plant-dominated carbon source and repeated wetting and drying cycles. The oxygen isotope data points to an evaporation and temperature controlled δ18OV-SMOW value of meteoric water of −7.0% to −4.8%. A syngenetic to early diagenetic timing of dolomitization is indicated, suggesting both dolomite and bentonite formation in non-saline, non-arid and repeatedly partially-oxygenated and reducing soil and groundwater environments during pedogenesis.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul Aziz, H., Böhme, M., Rocholl, A., Zwing, A., Prieto, J., Wijbrans, J.R., Heissig, K. & Bachtadse, V. (2009) Integrated stratigraphy and 40Ar/39Ar chronology of the Early to Middle Miocene Upper Freshwater. International Journal of Earth Sciences, 97, 115134.CrossRefGoogle Scholar
Alonso-Zarza, A.M. (2003) Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth-Science Reviews, 60, 261298.CrossRefGoogle Scholar
Alonso-Zarza, A.M. & Wright, V.P. (2010) Calcretes. Pp. 225–267 in: Carbonates in Continental Settings: Facies, Environments and Processes (A.M. Alonso- Zarza & L.H. Tanner, editors). Developments in Sedimentology, 61. Elsevier, Amsterdam.Google Scholar
Armenteros, I. (2010) Diagenesis of Carbonates in Continental Settings. Pp. 61–151 Carbonates in Continental Settings: Geochemistry, Diagenesis and Applications (A.M. Alonso-Zarza & L.H. Tanner, editors). Developments in Sedimentology, 62, Elsevier, Amsterdam.Google Scholar
Bauer, K. (2014) Stable O and H isotopic composition of hydrous minerals as proxies for paleoclimate and topography: Application to the European Alps. PhD thesis, Université de Lausanne, Switzerland. Pp. 304305.Google Scholar
Böhme, M. (2003) The Miocene Climatic Optimum: Evidence from ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 195, 389401.Google Scholar
Böhme, M., Bruch, A.A. & Selmeier, A. (2007) The reconstruction of Early and Middle Miocene climate and vegetation in Southern Germany as determined from the fossil wood fauna. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 91114.Google Scholar
Breecker, D.O., Sharp, Z.D. & McFadden, L.D. (2009) Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Geological Society of America Bulletin, 121, 630640.Google Scholar
Caballero, E., de Cisneros, C.J., Huertas, F.J., Huertas, F., Pozzuoli, A. & Linares, J. (2005) Bentonites from Cabo de Gata, Almería, Spain: a mineralogical and geochemical overview. Clay Minerals, 40, 463480.Google Scholar
Capo, R.C., Whipkey, C.E., Blachère, J.R. & Chadwick, O.A. (2000) Pedogenic origin of dolomite in a basaltic weathering profile, Kohala peninsula, Hawaii. Geology, 28, 271274.2.0.CO;2>CrossRefGoogle Scholar
Cerling, T.E. (1984) The stable isotopic composition of soil carbonate and its relationship to climate. Earth and Planetary Science Letters, 71, 229240.Google Scholar
Cerling, T.E. (1991) Carbon dioxide in the atmosphere: Evidence from Cenozoic and Mesozoic paleosols. American Journal of Science, 291, 377400.CrossRefGoogle Scholar
Cerling, T.E. & Quade, J. (1993) Stable carbon and oxygen isotopes in soil carbonates. Geophysical Monograph Series, 78, 217231.Google Scholar
Christidis, G. (2008) Do bentonites have contradictory characteristics? An attempt to answer unanswered questions. Clay Minerals, 43, 515529.Google Scholar
Christidis, G. & Dunham, A.C. (1997) Compositional variations in smectites; Part II, Alteration of acidic precursors, a case study from Milos Island, Greece. Clay Minerals, 32, 253270.Google Scholar
Christidis, G. & Huff, W.D. (2009) Geological aspects and genesis of bentonites. Elements, 5, 9398.Google Scholar
Decher, A., Bechtel, A., Echle, W., Friedrich, G. & Hoernes, S. (1996) Stable isotope geochemistry of bentonites from the island of Milos (Greece). Chemical Geology, 129, 101113.CrossRefGoogle Scholar
Deines, P. (2004) Carbon isotope effects in carbonate systems. Geochimica et Cosmochimica Acta, 68, 26592679.CrossRefGoogle Scholar
Delgado, A. (1993) Estudio isotópico de los procesos diagenéticos e hidrotermales relacionados con la génesis de bentonitas (Cabo de Gata, Almería). PhD thesis, Universidad Granada, Spain, Pp. 91113.Google Scholar
Delgado, A. & Reyes, E. (1993) Isotopic study of the diagenetic and hydrothermal origins of the bentonite deposits at Los Escullos (Almería, Spain). Pp. 675–678 in: Current research in Geology Applied to Ore Deposits, (P. Fenoll Hach-Ali, J. Torres-Ruiz & F. Gervilla, editors), University of Granada, Spain.Google Scholar
Diaz-Hernandez, J.L., Sánchez-Navas, A. & Reyes, E. (2013) Isotopic evidence for dolomite formation in soils. Chemical Geology, 347, 2033.CrossRefGoogle Scholar
Egger, R., Eichinger, L., Rauert, W. & Stichler, W. (1983) Untersuchung zum Grundwasserhaushalt des Tiefenwassers der Oberen Süßwassermolasse durch Grundwasseraltersbestimmung. Informations-berichte Bayerisches Landesamt für Wasserwirtschaft, 8/83, 99145.Google Scholar
Folk, R.L. & Land, L.S. (1975) Mg/Ca ratio and salinity: two controls over crystallization of dolomite. American Association of Petroleum Geologists Bulletin, 59, 6068.Google Scholar
Freudenberger, W. & Schwerd, K. (1996) Erläuterungen zur Geologischen Karte von Bayern 1:500000. Bayerisches Geologisches Landesamt. Pp. 1–329.Google Scholar
Freytet, P. & Verrecchia, E.P. (2002) Lacustrine and palustrine carbonate petrography: an overview. Journal of Paleolimnology, 27, 221237.CrossRefGoogle Scholar
García del Cura, M.A., Calvo, J.P., Ordonez, S., Jones, B.F. & Canaveras, J.C. (2001) Petrographic and geochemical evidence for the formation of primary, bacterially induced lacustrine dolomite: La Roda ‘white earth’ (Pliocene, central Spain). Sedimentology, 48, 897915.Google Scholar
Gilg, H.A. (2000) D-H evidence for the timing of kaolinization in Northeast Bavaria, Germany. Chemical Geology, 170, 518.CrossRefGoogle Scholar
Gilg, H.A. (2005) Eine geochemische Studie an Bentoniten und vulkanischen Gläsern des nordalpinen Molassebeckens (Deutschland, Schweiz). Pp. 16–18 in: Berichte der deutschen Ton- und Tonmineralgruppe e.V., Beiträge zur Jahrestagung Celle 10.–12. Oktober 2005, (R. Dohrmann, editor), Deutsche Ton- und Tonmineralgruppe, Köln, Germany.Google Scholar
Gilg, H.A. & Rocholl, A. (2009) The bentonite puzzle: a stable isotope and geochemical perspective, p. 87 in: Abstracts of the 46th Annual Meeting of the Clay Minerals Society, Clay Minerals Society, Billings.Google Scholar
Grim, R.E. & Güven, N. (1978) Origin of bentonites. Pp. 126–137 in: Bentonites: Geology, Mineralogy, Properties and Uses (R.E. Grim & N. Güven, editors). Developments in Sedimentology, 24, Elsevier, Amsterdam.Google Scholar
Héran, M.A., Lécuyer, C. & Legendre, S. (2010) Cenozoic long-term terrestrial climatic evolution in Germany tracked by d18O of rodent tooth phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology, 285, 331342.Google Scholar
Hillel, D. (1982) Introduction to Soil Physics. Academic Press, New York. Pp. 155167.Google Scholar
Hofmann, B. (1973) Geologische Karte von Bayern 1:25000, Erläuterungen zum Blatt Nr. 7439 Landshut Ost. Pp. 44–50.Google Scholar
Kearsey, T., Twitchett, R.J. & Newell, A.J. (2012) The origin and significance of pedogenic dolomite from the Upper Permian of the South Urals of Russia. Geological Magazine, 149, 291307.Google Scholar
Kenward, P.A., Goldstein, R.H., Gonzáles, L.A. & Roberts, J.A. (2009) Precipitation of low temperature dolomite from an anaerobic microbial consortium: the role of methanogenic Archaea. Geobiology, 7, 556565.Google Scholar
Kim, S.T. & O’Neil, J.R. (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61, 34613475.Google Scholar
Kirkland, B.L., Lynch, F.L., Rahnis, M.A., Folk, R.L., Molineux, I.J. & McLean, R.J.C. (1999) Alternative origins for nannobacteria-like objects in calcite. Geology, 27, 347350.Google Scholar
Klappa, C.F. (1980) Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance. Sedimentology, 27, 613629.CrossRefGoogle Scholar
Last, W.M. (1990) Lacustrine dolomite – an overview of modern, Holocene, and Pleistocene occurrences. Earth-Science Reviews, 27, 221263.Google Scholar
Laudelout, H., van Bladel, R., Bolt, G.H. & Page, A.L. (1968) Thermodynamics of heterovalent cation exchange reaction in a montmorillonite clay. Transactions of the Faraday Society, 64, 14771488.Google Scholar
Lemcke, K. (1973) Zur nachpermischen Geschichte des nördlichen Alpenvorlandes. Geologica Bavarica, 69, 548.Google Scholar
Machel, H.-G. & Mountjoy, E.W. (1986) Chemistry and environments of dolomitization – a reappraisal. Earth-Science Reviews, 23, 175222.Google Scholar
Nettleton, W.D., Olson, C.G. & Wysocki, D.A. (2000) Paleosol classification: Problems and solutions. Catena, 41, 6192.Google Scholar
Pacton, M., Gorin, G., Vasconcelos, C., Gautschi, H.P. & Barbarand, J. (2010) Structural arrangement of sedimentary organic matter: nanometer-scale spheroids as evidence of a microbial signature in early diagenetic processes. Journal of Sedimentary Research, 80, 919932.CrossRefGoogle Scholar
Passey, B.H., Levin, N.E., Cerling, T.E., Brown, F.H. & Eiler, J.M. (2010) High-temperature environments of human evolution in East Africa based on bondordering in palaeosol carbonates. Proceedings of the National Academy of Science, 107, 1124511249.Google Scholar
Quade, J., Eiler, J., Daëron, M. & Achyuthan, H. (2013) The clumped isotope geothermometer in soil and paleosol carbonate. Geochimica et Cosmochimica Acta, 105, 92107.Google Scholar
Retallack, G.J. (1988) Field recognition of palaeosols. Pp. 1–20 in: Paleosols and Weathering through Geologic Time: Principles and Applications. Geological Society of America Special Paper, 216, (J. Reinhardt & W.R. Sigleo, editors). Boulder, Colorado, USA.Google Scholar
Roberts, J.A., Bennett, P.C., González, L.A., Macpherson, G.L. & Milliken, K.L. (2004) Microbial precipitation of dolomite in methanogenic groundwater. Geology, 32, 277280.Google Scholar
Romanek, C.S., Grossmann, E.L. & Morse, J.W. (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta, 56, 419430.Google Scholar
Rosenbaum, J. & Sheppard, S.M.F. (1986) An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochimica et Cosmochimica Acta, 50, 11471150.Google Scholar
Sánchez-Román, M., Romanek, C.S., Fernández-Remolar, D.C., Sánchez-Navas, A., McKenzie, J.A., Pibernat, R.A. & Vasconcelos, C. (2011) Aerobic biomineralization of Mg-rich carbonates: Implications for natural environments. Chemical Geology, 281, 143150.Google Scholar
Sayles, F.L. & Mangelsdorf, P.C. Jr. (1979) Cationexchange characteristics of Amazon River suspended sediment and its reaction with seawater. Geochimica et Cosmochimica Acta, 43, 767779.Google Scholar
Schieber, J. & Arnott, H.J. (2003) Nanobacteria as a byproduct of enzyme-driven tissue decay. Geology, 31, 717720.Google Scholar
Schmid, W. (2002) Ablagerungsmilieu, Verwitterung und Paläoböden feinklastischer Sedimente der Oberen Süßwassermolasse Bayerns. Bayerische Akademie der Wissenschaften Abhandlungen, Heft 172, PhD thesis, Ludwig-Maximilians-Universität, Germany. Pp. 170185.Google Scholar
Sheppard, S.M.F. & Schwarcz, H.P. (1970) Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite. Contributions to Mineralogy and Petrology, 26, 161198.Google Scholar
Southam, G. & Donald, R. (1999) A structural comparison of bacterial microfossils vs. ‘nanobacteria’ and nanofossils. Earth-Science Reviews, 48, 251264.CrossRefGoogle Scholar
Talbot, M.R. (1990) A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology, Isotope Geoscience Section, 80, 261279.Google Scholar
Tütken, T., Vennemann, T.W., Janz, H. & Heinzmann, E.P.J. (2006) Palaeoenvironment and palaeoclimate of the Middle Miocene lake in the Steinheim basin, SW Germany: A reconstruction from C, O, and Sr isotopes of fossil remains. Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 457491.Google Scholar
Tütken, T. & Vennemann, T.W. (2009) Stable isotope ecology of Miocene large mammals from Sandelzhausen, southern Germany. Paläontologische Zeitschrift, 83, 207226.Google Scholar
Ulbig, A. (1999) Untersuchungen zur Entstehung der Bentoniteinder bayerischen Oberen Sübwassermolasse. Neues Jahrbuch Geologisch- Paläontologische Abhandlungen, 214, 497508.Google Scholar
Unger, H.J. (1999) Die tektonischen Strukturen der bayerischen Ostmolasse. Documenta Naturae, 125, 116.Google Scholar
van Lith, Y., Warthmann, R., Vasconcelos, C. & McKenzie, J.A. (2003) Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mgcalcite formation. Geobiology, 1, 7179.Google Scholar
Vasconcelos, C., McKenzie, J.A., Warthmann, R. & Bernasconi, S.M. (2005) Calibration of the d18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology, 33, 317320.Google Scholar
Vogt, K. (1980) Bentonite Deposits in Lower Bavaria. Geologisches Jahrbuch, D39, 47–68.Google Scholar
Warthmann, R., van Lith, Y., Vasconcelos, C., McKenzie, J.A. & Karpoff, A.M. (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28, 10911094.Google Scholar
Wright, V.P. & Tucker, M.E. (1991) Calcretes: an introduction. Pp. 1–25 in: Calcretes. (V.P. Wright & M.E. Tucker, editors). The International Association of Sedimentologists, Reprint Series no. 2. Blackwell Scientific Publications, Oxford, UK.Google Scholar