Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T01:09:49.913Z Has data issue: false hasContentIssue false

Palaeogeographic controls on palygorskite occurrence in mid-Cretaceous sediments of Morocco and adjacent basins

Published online by Cambridge University Press:  09 July 2018

T. Pletsch
Affiliation:
Geologisches Institut, Olshausenstr. 40-60, D-24118 Kiel, Germany
L. Daoudi
Affiliation:
Géologie, Université Cadi Ayyad, Faculté des Sciences et Techniques Marrakesh II, BP 618, Marrakesh, Morocco
H. Chamley
Affiliation:
Geologisches Institut, Olshausenstr. 40-60, D-24118 Kiel, Germany
J. F. Deconinck
Affiliation:
Sédimentologie et Géodynamique, URA 719 CNRS, Université de Lille 1, 59655 Villeneuve d'Ascq, Cedex, France
M. Charroud
Affiliation:
Géologie, Faculté des Sciences de Fès II, Fès-Saïss, Morocco

Abstract

Palygorskite has been identified as a major constituent of the clay fraction in mid-Cretaceous deposits of the Meseta, the Middle Atlas, and the Rif in central and northern Morocco. Two types of palygorskite are differentiated, based on the morphology of crystallites, bio- and lithofacies associations of the containing sediments. Type 1 occurs in sections of the Meseta and the Middle Atlas, where the mineral displays bundles of long fibres under the electron microscope and is associated with shallow marine carbonate and evaporite facies. Type 2 was found in the Rif, where palygorskite occurs mostly as bundles of shorter fibres in turbiditic sediments of a supposed deep-marine environment. Associated microfossils indicate reworking of the palygorskite-bearing sediment from shallower parts of the basin. Palygorskite apparently grew authigenically in the chemically restricted environments of the Meseta and the Middle Atlas, whereas it is of a detrital origin in the Rif section. We consider that sediments containing authigenically formed palygorskite (type 1) could be the source of detrital palygorskite (type 2). Type 1 deposits on the North African shelf were probably partly reworked and responsible for the supply of palygorskite to mid-Cretaceous Atlantic basins, where the mineral is well known from several DSDP sites. As in the case of various Recent deep-sea palygorskite occurrences, aeolian transport may have significantly contributed to palygorskite supply to the ocean basins.

Resume

Resume

L'étude de la minéralogie des argiles des sédiments albo-cénomaniens du Rif, de la Meseta et du Moyen-Atlas (Maroc) montre la présence fréquente de fortes proportions de palygorskite. Dans la Meseta et le Moyen-Atlas, ce minéral s'est formé sur place dans des milieux chimiquement confinés (origine autochtone = type 1). En revanche, dans le Rif, la palygorskite associée à des dépôts gravitaires semble remaniée depuis des milieux de plates-formes peu profonds (origine allochtone = type 2). Sous des conditions climatiques favorables, la présence de minéraux fibreux dans les bassins marocains paraît principalement contrôlée par les paléomorphologies continentales, l'activité tectonique des marges, les vitesses d'érosion et sédimentation, et le confinement plus ou moins prononcé des environnements de dépôt. Les nouvelles données présentées montrent que les palygorskites des bassins côtiers marocains constituent une des sources potentielles des palygorskites océaniques qui, comme dans diverses séries récentes, résultent parfois d'un transport éolien.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou Ali, N. (1994) Le Crétacé inférieur et moyen du Bassin cotier de Tarfaya (Sédimentation, Stratigraphie, Analyse séquentielle et Paléogéographie). Thèse Fac. Sci. Marrakesh, Morocco.Google Scholar
Accarie, H. & Deconnick, J.F. (1989) Relation entre présence de palygorskite et périodes d'anoxie a l'Albien supérieur et au Turonien inérieur à moyen dans le massif de la Maiella (Abruzzes/Italie). C. R. Acad. Sci., Paris 308, 12671272.Google Scholar
Aqraw, A.A.M. (1993) Palygorskite in the Recent fluvio-lacustrine and deltaic sediments of southern Mesopotamia. Clay Miner. 28, 153159.CrossRefGoogle Scholar
Berger, W. & Von Rad, U. (1972) Cretaceous and Cenozoic sediments from the Atlantic Ocean. Pp. 787-954 in: Init. Rep. Deep Sea Drill. Proj. 14, (Hayes, D.E., Pimm, A.C. et al., editors). U.S. Gov. Print. Off. Washington.Google Scholar
Berthou, P.Y., Blanc, P. & Chamley, H. (1982) Sédimentation argileuse comparée au Crétacé moyen et supérieur dans le bassin occidental du Portugal et sur la marge voisine (site 398 D.S.D.P.): enregistrements paléogéographiques et tectoniques. Bull. Soc. géol. France. (7) 24, 461472.Google Scholar
Bonatr, E. & Joensuu, O. (1968) Palygorskite from the deep sea: a reply. Am. Miner. 54, 568.Google Scholar
Brix, M. (1981) Schwermineralanalyse und andere sedimentologische Untersuchungen als Beitrag zur Rekonstruktion der strukturellen Entwicklung des westlichen Hohen Atlas/Marokko. PhD thesis, Univ. Bonn, Germany.Google Scholar
Brosse, E. (1982) Contribution à la minéralogie et à la géochimie des sédiments pélagiques profonds. Comparaison des “Black-shales” du Crétacé dans l'Atlantique Central Nord et des dépots du Malta et du Crétacé en Briançonnais. Thèse Doct. Ing., Ecole des Mines de Paris, France.Google Scholar
Brown, G. & Brindley, G.W., 1980. X-ray diffraction procedures for clay mineral identification. Pp. 305–359 in: Crystal Structures of Clay Minerals and their X-ray Identification. (Brindley, G.W. & Brown, G., editors). Mineral. Soc., London, Monogr. 5.Google Scholar
Callen, R.A. (1984) Clays of the palygorskite-sepiolite group: depositional environment, age and distribution. Pp. 1–37 in: Palygorskite-Sepiolite. Occurrences, Genesis and Uses (Singer, A. & Galan, E., editors). Developments in Sedimentology, 37, Elsevier, Amsterdam.Google Scholar
Chamley, H. (1971) Recherches sur la sédimentation argileuse en Méditerranée. Sci. Géol. Strasbourg, mém. 35: 225 pp.Google Scholar
Chamley, H. (1989) Clay Sedimentology. 623 pp. Springer, Berlin.CrossRefGoogle Scholar
Chamley, H. & Debrabant, P. (1984a) Mineralogical and geochemical investigations of sediments on the Mazagan Plateau, northwestern African margin (Leg 79, DSDP). Pp. 497-508 in: Init. Rep. Deep Sea Drill. Proj. 89, (Hinz, K., Winterer, E.L. et al., editors). U.S. Gov. Print. Off. Washington.Google Scholar
Chamley, H. & Debrabant, P. (1984b) Paleoenvironmental history of the North Atlantic region from mineralogical and geochemical data. Sedim. Geol., 40, 151167.CrossRefGoogle Scholar
Chamley, H. & Mmlot, G. (1970) Séquences sédimentaires à attapulgite dans une carotte profonde pré1evée en Mer Ionienne (Méditerranée orientale). C. R. Acad. Sci., Paris. 270, 10841087.Google Scholar
Chamley, H., Debrabant, P. & Flicoteatjx, R. (1988) Comparative evolution of the Senegal and eastern Central Atlantic Basins, from mineralogical and geochemical investigations. Sedimentology, 35, 85103.Google Scholar
Chamley, H., Diester-Haas, L. & LANGE, H. (1977) Terrigenous material in East Atlantic sediment cores as an indicator of NW African climates. “Meteor” Forschungsergebnisse C, 26, 44–59.Google Scholar
Coude-Gaussen, G. (1982) Les poussières éoliennes sahariennes. Essai de mise au point. Rev. Géomorphol. Dyn. 31, 4969.Google Scholar
Coude-Gaussen, G. & Blanc, P. (1985) Présence de grains éolisés de palygorskite dans les poussières actuelles et les sédiments récents d'origine désertique. Bull. Soc. géol. France. (8), 1, 571579.Google Scholar
Daoudi, L. (1991) Sédimentation et diagenèse des argiles du Jurassique supérieur a l''Eocène dans le bassin du Haut-Atlas occidental. Thèse Univ. Lille-1, France, 196 pp.Google Scholar
Daoudi, L. (1993) Minéralogie des argiles des formations crétacées du Haut-Atlas occidental: diagenèse et paléoenvironnement. 14th Regional Meeting of Sedimentology, Marrakesh, 119.Google Scholar
Daoudi, L. & Deconinck, J.F. (1994) Controles paléogéographique et diagénétique des successions sédimentaires argileuses du bassin atlasique au Crétacé (Haut-Atlas occidental, Maroc). J. Aft. Earth Sci. 18, 123134.CrossRefGoogle Scholar
Daoudi, L., Deconinck, J.F., Beauchamp, J. & Debrabant, P. (1989) Minéraux argileux du bassin d'Agadir (Maroc) au Jurassique supérieur-Crétacé. Comparaison avec le domaine Est-Atlantique voisin. Ann. Soc. géol. Nord, 108, 1524.Google Scholar
Debrabant, P., Fagel, N., Chamley, H., Bout, V. & Caulet, J.P. (1993) Neogene to Quaternary clay mineral fluxes in the Central Indian Basin. Paleogeogr. -climat., -ecol. 103, 117–131.Google Scholar
De Graciansky, P.C., Brosse, E., Deroo, G., Herbin, J.P., Montadert, L., Muller, C., Slgal, J. & Schaaf, A. (1982) Les formations d'age crétacé de l'Atlantique Nord et leur matière organique: paléogéographie et milieux de depot. Rev. Inst. Fr. Pétrole, 37, 275336.Google Scholar
De Graciansky, P.C., Brosse, E., Deroo, G., Herbin, J.P., Montadert, L., Moller, C., Sigal, J. & Schaaf, A. (1987) Organic-rich sediments and palaeoenvironmental reconstructions of the Cretaceous North Atlantic. Pp. 317-344 in: Marine Petroleum Source Rocks (Brooks, J. & Fleet, A.J., editors). Geological Society, London, Special Publication, 26, Blackwell, Oxford.Google Scholar
Desprairies, A. (1981) Authigenic minerals in volcanogenic sediments cored during Deep Sea Drilling Project leg 60. Pp. 455-466 in: lnit. Rep. Deep Sea Drill. Proj. 60, (Hussong, D.M., Uyeda, S. et al., editors). U.S. Gov. Print. Off. Washington.Google Scholar
Didon, J., Durand Delga, M. & Kornpronst, J. (1973) Homologies géologiques entre les deux rives du détroit de Gibraltar. Bull. Soc. géol. France. (7), 15, 77105.Google Scholar
El Albani, A., Deconinck, J.F., Bettar, I., Daoudi, L., El Kamali, N. & Masrour, M. (1993) Sédimentologie des argiles du Crétacé supérieur du Bassin de Tarfaya. 14th Regional Meeting of Sedimentology, Marrakesh, 125-126.Google Scholar
Eagle, N., André, L., Chamley, H., Debrabant, P. & Jolivet, L. (1992a) Clay sedimentation in the Japan Sea since the Early Miocene: influence of source rock and hydrothermal activity. Sedim. Geol. 80, 2740.Google Scholar
Fagel, N., Debrabant, P., De Menocal, P. & Dumoulin, B. (1992b) Utilisation des minéraux argileux pour la reconstitution des variations paléoclimatiques à court terme en Mer d'Arabie. Oceanol. Acta, 15, 125-136.Google Scholar
Eroget, C. & Chamley, H. (1977) Présence de sépiolite détfitique darts les sédiments récents du Golfe d'Arzew (Algérie). C.R. Acad. Sci., Paris, 285, 307-310.Google Scholar
Floquet, J. (1991) La plate-forme Nord-Castillane au Crétacé supérieur (Espagne). Mém. géol. Univ. Dijon, 14, 925 pp.Google Scholar
Gélard, J.P. (1969) Le flysch á base schisto-gréseuse de la bordure méridionale et orientale du massif de Chellata: le flysch maurétanien (Grande Kabylie). Bull. Soc. géol. France. (7) 11, 676686.CrossRefGoogle Scholar
Gigout, M. (1951) IÉtudes géologiques sur la Méséta marocaine occidentale (arrière pays de Casablanca, Mazagan et Sail). Notes et Mém. Serv. Géol. Maroc. 86, 507 pp.Google Scholar
Gbeli, A.A., Hochuli, P.A. & Wildi, W. (1984) Lower Cretaceous turbiditic sediments from the Rif chain (Northern Morocco)–palynology, stratigraphy and palaeogeographic setting. Geol. Rundsch. 73, 10811114.Google Scholar
Hartmann, M., Lange, H., Seibold, E. & Walger, E. (1971) Oberfl∼ichen-Sedimente im Persischen Golf yon Oman. I. Geologisch-hydrologischer Rahmen und erste sedimentologische Ergebnisse. “Meteor” Forschungsergebnisse C, 4, 1–76.Google Scholar
Holtzapffel, T. (1985) Les minéraux argileux. Préparation. Analyse diffractométrique et détermination. Publ. Soc. géol. Nord. 12, 136 pp.Google Scholar
Inoue, A., Bouchet, A., Velde, B. & Meunier, A., 1989. Convenient technique for estimating smectite layer percentage in randomly interstratified illite/smectite minerals. Clays Clay Miner. 37, 227234.CrossRefGoogle Scholar
Jansa, L.F. & Wiedmann, J. (1982) Mesozoic-Cenozoic development in the Eastern North American and Northwest African continental margins: a comparison. Pp. 215-269 in: Geology of the Northwest African Continental Margin (von Rad, U., Hinz, K., Sarnthein, M. & Seibold, E., editors). Springer- Verlag, Berlin.Google Scholar
Jansa, L.F., Enos, P., Tucholke, B.E., Gradstein, P.M. & Sheridan, R.E. (1979) Mesozoic-Cenozoic sedimentary formations of the North American Basin; western North Atlantic. Pp. 1–57 in: Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment (Talwani, M., Hay, W. & Ryan, W.B.F., editors). Maurice Ewing Series 3, American Geophysical Union, Washington, D.C. Google Scholar
Karpoff, A.M., Lagabrielle, Y., Boillot, G. & Girardeau, J. (1989) L'authigenése océanique de palygorskite par halmyrolyse de péridotites serpentinisées (Marge de Galice): ses implications géodynamiques. C. R. Acad. Sci., Paris, 308, 647654.Google Scholar
Kastner, M. (1986) Mineralogy and diagenesis of sediments at site 597: preliminary results. Pp. 345-349 in: Init. Rep. Deep Sea Drill. Proj., 92 (Leinen, M., Rea, D.K., et al., editors). U.S. Gov. Print. Off. Washington.Google Scholar
Lange, n. (1975) Herkunft und Verteilung yon Oberflächensedimenten des westafrikanischen Schelfs and Kontinentalhanges. “Meteor” Forschungsergebnisse C, 22, 61–85.Google Scholar
Lever, A. & Mccave, I.N. (1983) Eolian components in Cretaceous and Tertiary North Atlantic sediments. J. Sed. Pet. 53, 811-832.Google Scholar
Lopez Galindo, A. (1987) Paligorskita en sedimentos cretacicos de la Zona Subbetica. Origen. Bol. Soc. Esp. Miner. 10, 131139.Google Scholar
Lopez Galindo, A. & Martin-Algarra, A. (1992) Palaeogeography and clay mineralogy of mid–Cretaceous flysches of the Gibraltar Arc area. Cret. Res. 13, 421443.Google Scholar
Lopez Galindo, A., Ben Aboud, A., Fenoll Hach-Ali, P. & Casa Ruiz, J. (1996) Mineralogical and geochemical characterization of palygorskite from Gabasa (NE Spain). Evidence of a detrital precursor. Clay Miner. 31, 33-44.Google Scholar
Melieres, F. (1978) X-ray mineralogy studies, leg 41, Deep Sea Drilling Project, Eastern North Atlantic Ocean. Pp. 1065-1086 in: lnit. Rep. Deep Sea Drill. Proj. 41 (Lancelot, Y., Seibold, E., et al., editors). U.S. Gov. Print. Off., Washington.Google Scholar
Michard, A. (1976) Éléments de géologie marocaine. Notes et Mém. Serv. Géol. Maroc. 252, 408 pp.Google Scholar
Millot, G. (1970) Geology of Clays. 425 pp. Springer, Bedim Masson, Paris.Google Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysb of Clay Minerals. Oxford University Press, 332 pp.Google Scholar
Olivet, J.L., Bonnin, J., Beuzart, P. & Auzende, J.M. (1984) Cinématique de l'Atlanfique Nord et Central. Publ. Cent. Nat. Expl. Oceans. Rap. Sci Tech. 54, 1108.Google Scholar
Reicherter, K., Pletsch, T., Kuhnt, W., Manthey, J., Homeier, G., Wiedmann, J. & Thurow, J. (1994) Mid- Cretaceous paleogeography and paleoceanography of the Betic Seaway (Betic Cordillera, Spain). Palaeogeogr. -climat., -ecol. 107, 1–33.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249-303 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Robert, C., Gauthier, A. & Chamley, H. (1984) Origine autochtone et allochtone des argiles récentes de haute altitude en Corse. Géol. Médit. 11, 243-253.Google Scholar
Singer, A. & Galan, E. (1984) Palygorskite-sepiolite. Occurrences, genesis and uses. Developments in Sedimentology. Elsevier, Amsterdam, 37, 352 pp.Google Scholar
Sirocko, F. & Lange, H. (1991) Clay-mineral accumulation rates in the Arabian Sea during the late Quaternary. Mar. Geol. 97, 105-119.Google Scholar
Tazaki, K., Fyfe, W.S. & Heath, G.R. (1986) Palygorskite formed on montmorillonite in North Pacific deep-sea sediments. Clay Sci. 6, 197–216.Google Scholar
Thiry, M. & Jacquin, T. (1993) Clay mineral distribution related to rift activity, sea-level changes and paleoceanography in the Cretaceous of the Atlantic Ocean. Clay Miner. 28, 6184.CrossRefGoogle Scholar
Tomadin, L., Lenaz, R., Landuzzi, V., Mazzucotelli, A. & Vannuci, R. (1984) On wind-blown dusts over the central Mediterranean. Oceanol. Acta. 7, 13–24.Google Scholar
Trauth, N. (1977) Argiles évaporitiques dans la sédimentation carbonatée continentale et épicontinentale Tertiaire. Bassins de Paris, de Mormoiron et de Salinelles (France). Jéel Ghassoul (Maroc). Sci. Géol. Mém. 9, 195 pp.Google Scholar
Velde, B. (1985) Clay Minerals, A Physico-Chemical Explanation of their Occurrence. Developments in Sedimentology 40, 427 pp. Elsevier, Amsterdam.Google Scholar
Weaver, C.E. (1989) Clays, Muds and Shales. Developments in Sedimentology 44, 818 pp., Elsevier, Amsterdam.Google Scholar
Weaver, C.E & Beck, K.C. (1977) Miocene of The, S.E. United States. A model for chemical sedimentation in a peri-marine environment. Sed. Geol. 17, 1–234.Google Scholar
Wiedmann, J., Butt, A. & Einsele, G. (1982) Cretaceous stratigraphy, environment and subsidence history at the Moroccan Continental Margin. Pp. 366–396 in: Geology of the Northwest African Continental Margin (yon Rad, U., Hinz, K., Samthein, M. & Seibold, E., editors). Springer-Verlag, Berlin.Google Scholar
Wildi, W. (1983) La cha∼ne tello-rifaine (Algérie, Maroc, Tunisie): structure, stratigraphie, et évolution du Trias au Miocène. Rev. Géol. Dyn. Géogr. Phys. 24, 201297.Google Scholar
Wurster, P. & Stets, J. (1982) Sedimentation in the Atlas Gulf II: mid-Cretaceous events. Pp. 439-459 in: Geology of the Northwest African Continental Margin (yon Rad, U., Hinz, K., Samthein, M. & Seibold, E., editors). Springer-Vedag, Berlin.Google Scholar