Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-04T18:42:35.629Z Has data issue: false hasContentIssue false

Palaeoenvironmental significance of clay minerals in Upper Cenomanian–Turonian sediments of the Western High Atlas Basin (Morocco)

Published online by Cambridge University Press:  09 July 2018

L. Daoudi*
Affiliation:
Laboratoire de Géosciences et Environnement, Faculté des Sciences et Techniques de Marrakech, Morocco
F. Rocha
Affiliation:
Geosciences Department, Universidade de Aveiro, Portugal
B. Ouajhain
Affiliation:
Laboratory of Marine Geoscience, Faculty of Sciences - EL Jadida, Morocco
J. L. Dinis
Affiliation:
IMAR-Institute of Marine Research, Department of Earth Sciences, University of Coimbra, Portugal
D. Chafiki
Affiliation:
Laboratoire de Géosciences et Environnement, Faculté des Sciences et Techniques de Marrakech, Morocco
P. Callapez
Affiliation:
IMAR-Institute of Marine Research, Department of Earth Sciences, University of Coimbra, Portugal
*

Abstract

Upper Cenomanian–Turonian clay mineral assemblages of sediments cropping out in the Western High Atlas basin are studied in four sections. Smectite and mixed-layer illite-smectite (I-S) have been identified as major constituents of the deposits. The composition of clay associations in black shales and associated sediments varies considerably according to age, but usually depends either on the general lithology, the abundance of organic matter, or the depth of burial. A distinct correlation is evident between clay mineral distribution and sea-level. Smectite and mixed-layer I-S with greater percentages of smectite layers increase in sediments deposited during transgressive periods, whereas they decrease progressively in the shallower facies deposited during regression in favour of illite and mixed-layer I-S with a greater percentage of illite. The vertical evolution and lateral distribution of clay assemblages and their relationships with sea-level as well as the palaeogeographic conditions prevailing during the Late Cenomanian–Turonian period (flattened topography and arid climate), indicate a detrital origin of the smectite minerals and a distribution pattern controlled by differential settling processes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdallah, H. & Meister, C. (1996) La limite Cénomanien-Turonien en Tunisie du Centre-Sud. Extension du faciès Bahloul (Cénomanien supérieur-Turonien inférieur): biostratigraphie, paléoenvironnements. Comptes Rendus de l'Académie des Sciences, Paris, 322, 39-46.Google Scholar
Accarie, H., Emmanuel, L., Robaszynski, F., Baudin, F., Amedro, F. & Caron, M. (1996) La géochimie isotopique du carbone comme outil stratigraphique. Application à la limite Cénomanien—Turonien en Tunisie Centrale. Comptes Rendus de l'Académie des Sciences, Paris, 322, 579586.Google Scholar
Ambroggi, R. (1963) Etude géologique du versant méridional du Haut Atlas occidental et de la plaine du Souss. Notes et Memoires du Service Géologique du Maroc, 157, 321 pp.Google Scholar
Amédro, F. & Robaszynski, F. (1993) La zone à Actinocamax plenus dans le domaine boréal. Elément de comparaison de la limite Cénomanien-Turonien entre les domaines boreal et téthysien. Crétacéous Research, 14, 487494.Google Scholar
Arthur, M.A. & Premoli-Silva, I. (1982) Development of widespread organic carbon rich strata in the Mediterranean Tethys. Pp. 754 in: Nature and Origin of Crétacéous-rich Facies (Schlanger, S.O. and Cita, M.B., editors), Academic Press, London.Google Scholar
Arthur, M.A. & Sageman, B.B. (1994) Marine black shales: depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences, 22, 499551.CrossRefGoogle Scholar
Butt, A. (1982) Micropaleontological bathymetry of the Crétacéous of Western Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology, 37, 235275.Google Scholar
Caron, M., Dal'agnolo, S., Accarie, H., Barrera, E., Kauffman, E.G. Amedro, F. & Rosbaszynski, F. (2006) Stratigraphie a haute resolution de la limite Cenomanien—Turonien sur les coupes de Pueblo (USA) et de l'Oued Bahloul (Tunisie): isotopes stables et corrélation des événements biologiques. Geobios, 39, 171200.Google Scholar
Chamley, H. (1989) Clay Sedimentology. Springer-Verlag, 623 pp.Google Scholar
Chamley, H. & Debrabant, P. (1982) L'Atlantique Nord à l'Albien: influences américaine et africaine sur la sédimentation. Comptes Rendus de l'Académie des Sciences, Paris, 294, 525528.Google Scholar
Chamley, H., Debrabant, P., Foulon, J. & Maillot, H. (1978) Minéralogie et géochimie des sédiments secondaires et cénozoiques de la marge atlantique nord-orientale (Legs 47 B, 4, 50, D.S.D.P.) Bulletin de la Société Géologique de France, (7), 20, 401-410.Google Scholar
Chamley, H., Deconinck, J.F. & Millot, G. (1990) Sur l'abondance des minéraux smectitiques dans les sédiments marins communs déposés lors des périodes de haut niveau marin du Jurassique supérieur au Paléogène. Comptes Rendus de l'Académie des Sciences, Paris, 31, 1529-1536.Google Scholar
Chantret, F., Desprairies, A., Douillet, P., Jacob, C., Steinberg, M. & Trauth, N. (1971) Révision critique de Putilisation des méthodes thermiques en sédimentologie: cas des smectites (Montmorillonites). Bulletin du Groupe Français des Argiles, XXIII, 141172.Google Scholar
Choubert, G. (1946) Apercu de la géologie marocaine. Revue de Géographie Marocaine, 2-3, 6977.Google Scholar
Claparols, C., Desprairies, A. & Loubet, M. (1990) Chemical and isotopic (143Nd/144Nd and 87Sr/86Sr) characteristics of black shales Mesozoic series from the South Atlantic Ocean: Evidence of contemporaneous volcanism. Chemical Geology, 84, 360362.Google Scholar
Clauer, N., Hoffert, M. & Karpoff, A. M. (1982) The Rb- Sr isotope system as an index of origin and diagenetic evolution of southern Pacific red clays. Geochimica et Cosmochimica Ada, 64, 26592664.CrossRefGoogle Scholar
Corfield, R.M., Cartlidge, J.E., Premoli Silva, I. & Housley, R.A. (1991) Oxygen and carbon isotope stratigraphy of the Paleogene and Crétacéous limestones in Bottacione Gorge and the Contessa Highway sections, Umbria, Italy. Terra Nova, 4, 414-422.Google Scholar
Daoudi, L. (1996) Contrôles diagénétique et paléogéographique des argiles des sédiments mésozoiques du Maroc. Comparaison avec les domaines atlantiques et téthysien. Doctorat Thesis, University of Marrakech, Morocco, 247 pp.Google Scholar
Daoudi, L. (2004) Palygorskite in the uppermost Crétacéous—Eocene Rocks from Marrakech High Atlas, Morocco. Journal of African Earth Sciences, 39, 353358.CrossRefGoogle Scholar
Daoudi, L. & Deconinck, J.F. (1994) Contrôles paléogéographique et diagénétique des successions sédimentaires argileuses du bassin atlasique au Crétacé (Haut Atlas occidental, Maroc). Journal of African Earth Sciences, 18, 123134.Google Scholar
Daoudi, L., Deconinck, J. F., Beauchamp, J. & Debrabant, P. (1989) Minéraux argileux du bassin d'Agadir (Maroc) au Jurassique supérieur-Crétacé. Comparaison avec le domaine Est-Atlantique voisin. Annales de la Société Géologique du Nord, 1524.Google Scholar
Daoudi, L., Deconinck, J. F., Witam, O. & Rey, J. (1995) Impact des variations du niveau marin sur les argiles: exemple du Crétacé inférieur du bassin d'Essaouira (Maroc). Comptes Rendus de l'Académie des Sciences, Paris, 320, 707711.Google Scholar
Daoudi, L., Charroud, M. & Bouabdelli, M. (1996) Origine et distribution des minéraux argileux des formations Crétacé-Eocène du Moyen Atlas sudoccidental: signification paleogeographique. Mines, Geologie et Energie, Rabat, 55, 3948.Google Scholar
Desprairies, A. & Bonnot-Courtois, C. (1980) Relation entre la composition des smectites d'alteration sous marine et leur cortège de terres rares. Earth and Planetary Science Letters, 48, 124130.Google Scholar
Desprairies, A., Bonnot-Courtois, C., Jehanno, C., Vernhet, S. & Joron, J.L. (1981) Mineralogy and geochemistry of alteration products in Leg 81 basalts. In. Roberts, D.G.., Schinitker, D. et al., editors. Initial Reports of Deep Sea Drilling Project, 81, 773742.Google Scholar
Dewey, J.F., Pitman, W.C. III, Ryan, W.B.F. & Bonin, J. (1973) Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin, 84, 31373180.2.0.CO;2>CrossRefGoogle Scholar
Dinis, J.M., Pena dos Reis, R. & Cunha, P.P. (1994) Controls on vertical changes of alluvial system character. The “grés belasianos” unit - Crétacéous of the Lusitanian Basin (Central Portugal). Cuadernos de Geologia Iberica, 18, 2758.Google Scholar
Dunoyar De Segonzac, G. (1970) The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentology, 15, 281346.Google Scholar
El Albani, A. (1995) Les formations du Crétacé supérieur du bassin de Tarfaya (Maroc méridional): sédimentologie et géochimie. PhD thesis, University of Lille I, France.Google Scholar
Ettachfini, E.M. (1992) Le Vraconien, Cénomanien et Turonien du bassin d'Essaouira (Haut Atlas occidental, Maroc): Analyse lithologique, biostratigraphique et sédimentologique, stratigraphie séquentielle. PhD thesis, University of Paul Sabatier, Toulouse, France.Google Scholar
Ettachfini, E.M., Souhel, A., Andreu, B. & Caron, M. (2005) La limite Cénomanien-Turonien dans le Haut Atlas central, Maroc. Geobios, 38, 1, 57-68.Google Scholar
Floquet, M. (1991) La plate-forme Nord-Castillanne au Crétacé Supérieur (Espagne). Memoire Geologique, University of Dijon, France, 14, 925 pp.Google Scholar
Frakes, L.A. (1919) Climates Throughout Geologic Time. Elsevier, Amsterdam, 310 pp.Google Scholar
Galhano, C., Rocha, F. & Gomes, C. (1999) Geostatistical analysis of the influence of textural, mineralogical and geochemical parameters on the geotechnical behaviour of the ‘Argilas de Aveiro’ formation (Portugal). Clay Minerals, 34, 109116.CrossRefGoogle Scholar
Gibbs, R.J. (1977) Clay mineral segregation in the marine environment. Journal of Sedimentary Petrology, 47, 237243.Google Scholar
Grosheny, D., Beaudoin, B., Morel, L., & Desmares, D. (2006) High-resolution biotratigraphy and chemostratigraphy of the Cenomanian/Turonian boundary event in the Vocontian Basin, southeast France. Crétacéous Research, 27, 5, 629-640.Google Scholar
Hilbrecht, H. & Hoefs, J. (1986) Geochemical and palaeontological studies of the 5 C anomaly in boreal and north Tethyan Cenomanian—Turonian sediments in Germany and adjacent areas. Palaeogeography, P alaeo climatology, Palaeoecology, 53, 169189.Google Scholar
Holtzapffel, T. (1985) Minéraux argileux: Préparation, analyse diffractométrique et détermination. Annales de la Société Géologique du Nord, 12, 136 pp.Google Scholar
Hower, J., Eslinger, E., Hower, M. & Perry, E. (1976) Mechanism of burial metamorphism of argilaceous sediments: 1. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725737.Google Scholar
Içame, N. (1994) Sédimentologie, stratigraphie séquentielle et diagenèse carbonatee des faciès du Crétacé Moyen du bassin d'Essaouira (Haut Atlas occidental, Maroc). PhD thesis, University of Tunis II, Tunisia.Google Scholar
Inoue, A., Bouchet, A., Velde, B. & Meunier, A. (1989) Convenient technique for estimating smectite layer percentage randomly interstratified illite/smectite minerals. Clays and Clay Minerals, 37, 227234.Google Scholar
Jarvis, I., Carson, G.A., Cooper, M.K.E., Hart, M.B., Leary, P.N., Tocher, B.A., Home, D.J. & Rosenfeld, A. (1988) Microfossil assemblages and Cenomanian- Turonian (late Crétacéous) oceanic anoxic event. Crétacéous Research, 9, 3103.Google Scholar
Jati, M. (2007) Le passage Cénomanien-Turonien sur la marge Nord du continent africain (Maroc, Algérie, Tunisie): comparaison avec le bassin subalpin franqais. Apport de la sédimentologie et de la geochimie isotopique. PhD thesis, EOST-Université Louis Pasteur, Strasbourg, France.Google Scholar
Keller, G., Han, Q., Adatte, T. & Burns, S.J. (2001) Palaeoenvironment of the Cenomanian—Turonian transition at Eastbourne, England. Crétacéous Research, 22, 391422.Google Scholar
Kennett, J.P. (1982) Marine geology. Prentice Hall, Englewood Cliffs, New Jersey, 813 pp.Google Scholar
Kisch, H.J. (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks (Larsen, G. and Chilingar, G.V., editors). Pp. 289494 in: Diagenesis in Sediments and Sedimentary Rocks. Developments in Sedimentology, Elsevier, Amsterdam.Google Scholar
Kuhnt, W., Herbin, I.P., Thurow, J. & Wiedmann, J. (1990) Distribution of Cenomanian—Turonian organic facies in the western Mediterranean and along the adjacent Atlantic margin. Pp. 133160 in: Deposition of Organic Facies (Hue, A.Y., editor). Studies in Geology, 30, American Association of Petroleum Geologists, Tulsa, Oklahoma.Google Scholar
Kuhnt, W., Nederbragt, N. & Leine, L. (1997) Cyclicity of Cenomanian—Turonian organic-carbon-rich sediments in the Tarfaya Atlantic Coastal Basin (Morocco). Crétacéous Research, 18, 587601.Google Scholar
Lamolda, M.A., Gorostidi, A., Martinez, R., Lopez, G. & Peryt, D. (1997) Fossil occurrences in the Upper Cenomanian—Lower Turonian at Ganuza, northen Spain: an approach to Cenomanian—Turonian boundary chronostratigraphy. Crétacéous Research, 18, 331353.Google Scholar
Lopez Galindo, A. & Martin Algara, A. (1992) Palaeogeography and clay mineralogy of Mid- Crétacéous flysches of the Gibraltar Arc Area. Crétacéous Research, 13, 421443.Google Scholar
Luderer, F. & Kuhnt, W. (1997) A high resolution record of the Rotalipora extinction in laminated organiccarbon rich limestone of the Tarfaya Atlantic Coastal Basin (Morocco). Annales de Societe Geologique du Nord, 5, 199205.Google Scholar
Liming, S., Kolonic, S., Bel Hadj, E.M., Bel Hadj, Z., Cota, L., Baric, G. & Wagner, T. (2004) Integrated depositional model for the Cenomanian—Turonian organic-rich strata in North Africa. Earth-Science Reviews, 64, 51117.Google Scholar
Millot, G. (1970; Geology of Clays. Springer, Berlin. Masson, Paris, 425 pp.Google Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, 322 pp.Google Scholar
Morel, L. (1998) Stratigraphie à haute résolution du passage Cénomanien—Turonien. PhD thesis, University of Pierre et Marie Curie, Paris VI, France.Google Scholar
Oliveira, A., Rocha, F., Rodrigues, A., Jouanneau, J., Dias, A., Weber, O. & Gomes, C. (2002) Clay minerals from the sedimentary cover from the Northwest Iberian shelf. Progress in Oceanography, 52, 233247.Google Scholar
Oliver, F., Erbacher, J. & Mutterlos, J. (2006) Paleoenvironmental changes across the Cenomanian/Turonian Boundary Event (Oceanic Anoxic Event 2) as indicated by benthic foraminifera from the Demerara Rise (ODP Leg 207). Revue de Micropaléontologie, 49, 3, 121139.Google Scholar
Paquet, H. (1970) Evolution géochimique des minéraux argileux dans les altérations et les sols des climats méditerranéens et tropicaux à saisons contrastées. Mémoire du Service de la Carte géologique d'Alsace-Lorraine, 30, 210 pp.Google Scholar
Paul, C.R.C., Lamolda, M.A., Mitchell, S.F., Vaziri, M.R., Gorostidi, A. & Marshall, J.D. (1999) The Cenomanian—Turonian Boundary at Eastbourne (Sussex, UK): a proposed European reference section. Palaeogeography, Palaeoclimatology, Palaeoecology, 150, 83121.Google Scholar
Pevear, D.R. & Mumpton F .A., editors (1989) Quantitative Mineral Analysis of Clays. CMS Workshop Lectures, 1. The Clay Minerals Society, Aurora, Colorado, USA.Google Scholar
Pletsch, T., Daoudi, L., Chamley, H., Deconinck, J.F. & Charroud, M. (1996) Palaeogeographic controls on palygorskite occurence in mid-Crétacéous sediments of Morocco and adjacent basins. Clay Minerals, 31, 403416.Google Scholar
Pratt, L.M. & Threlkeld, C.N. (1984) Stratigraphie significance of 13C/12C ratios in mid-Crétacéous rocks of the Western Interior, USA. Pp. 305312 in: The Mesozoic of Middle North America (Stott, D.F. and Glass, D.J., editors). Canadian Society of Petroleum Geologists, 9.Google Scholar
Pratt, L.M., Arthur, M.A., Dean, W.E. & Scholle, P.A. (1993) Paleo-oceanographic cycles and events during the Late Crétacéous in the Western Interior seaway of North America. In: Caldwell, W.G.E. and Kauffman, E.G., Editors. Evolution of the Western Interior Basin, Geological Association of Canada, Special Paper, 39, 333353.Google Scholar
Rehault, J.-P. & Mauffret, A. (1976) Relationship between tectonics and sedimentation around the northwestern Iberian margin. In: Sibuet, J.C., Ryan, W.B.F. et al., Editors. Initial Report of the Deep Sea Drilling Program, 47, part 2, 663-681Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249303 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & G., Brown, editors). Monograph 5, Mineralogical Society, London.Google Scholar
Robert, C. (1982) Modalités de la sédimentation argileuse en relation avec l'histoire de VAtlantique Sud. Doctorat Thesis, University of Aix-Marseille, France, 141 pp.Google Scholar
Schlanger, S.O. & Jenkyns, H.C. (1976) Crétacéous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw, 55, 179184.Google Scholar
Simoneit, B.R.T. (1986) Biomarker geochemistry of black shales from Crétacéous oceans. An overview. Marine Geology, 70, 941.Google Scholar
Singer, A. (1984) The paleoclimatic interpretation of clay minerals in sediments — a review. Earth-Sciences Review, 21, 251293.Google Scholar
Stamm, R. & Thein, J. (1982) Sedimentation in the Atlas Gulf III: Turonian carbonates. Pp. 459475 in: Geology of the Northwest African Continental Margin (Von Rad, U., Hinz, K., Sarthein, M. & Seibold, E., editors). Springer-Verlag, Berlin.Google Scholar
Steinberg, M. (1989) Fluctuations of the accumulation rate of clay minerals in the south Atlantic ocean during the last 120 m.y. Abstracts, International Clay Conference, Strasbourg, p. 371.Google Scholar
Steinberg, M., Holtzapffel, T., Rautureau, M., Clauer, N., Bonnot-Courtois, C., Manoubi, T. & Badaut, D. (1984) Croissance cristalline et homogeneisation chimique de monoparticules argileuses au cours de la diagenese. Comptes Rendus de l'Academie des Sciences, Paris, 299, 441-446.Google Scholar
Taj Eddine, K. (1992) Le Jurasique terminal et le Crétacé basal dans l'Atlas atlantique (Maroc): biostratigraphie, sédimentologie, stratigraphie séquentielle et géodynamique. Doctorat Thesis, University of Marrakech, Morocco, 285 pp.Google Scholar
Terrab, S. (1996) Le Cenomanien-Turonien dAgadir. Stratigraphie et diagenèse (nodulisation). Mémoire des Sciences de la Terre, 27, Ecole des Mines de Paris, France, 254 pp.Google Scholar
Thiry, M. & Jacquin, T. (1993) Clay mineral distribution related to rift activity and sea level changes and paleoeeanography in the Crétacéous of the Atlantic ocean. Clay Minerals, 28, 6184.Google Scholar
Thorez, J. (1976) Pratical Identification of Clay Minerals. G. Lelotte, Belgium..Google Scholar
Tissot, B., Demaison, G., Masson, P., Delteil, J. & Combaz, A. (1980) Paleoenvironmental and petroleum potential of Middle Crétacéous black shales in Atlantic Basins. American Association of Petroleum Geologists Bulletin, 64, 20512063.Google Scholar
Trauth, N. (1977) Argiles évaporitiques dans la sédimentation carbonatée continentale et épicontinentale Tertiaire. Bassins de Paris, de Mormoiron et de Salinelles (France), Jbel Ghassoul (Maroc). Sciences Géologique, Memoires, 9, Strasbourg, France, 195 pp.Google Scholar
Weaver, C.E. (1989) Clays, Muds, and Shales. Elsevier, Amsterdam, 44, 819 pp.Google Scholar
Weir, A.H., Ormerod, E.C. & El Mansey, M.I. (1975) Clay mineralogy of sediments of the Western Nile delta. Clay Minerals, 10, 369386.Google Scholar
Wiedmann, J., Butt, A. & Einsele, G. (1982) Crétacéous stratigraphy, environment and subsidence history at the Moroccan Continental Margin. Pp. 366396 in: Geology of the Northwest African Continental Margin (Von Rad, U., Hinz, K., Sarthein, M. & Seibold, E., editors). Springer-Verlag, Berlin.Google Scholar
Wilson, M.D. & Pittman, E.D. (1977) Authigenic clay in sandstone: recognition and influence in reservoir properties and paleoenvironmental analysis. Journal of Sedimentary Petrology, 47, 331.Google Scholar
Wurster, P. & Stets, J. (1982) Sedimentation in the Atlas Gulf II: Mid-Crétacéous events. Pp. 439459 in: Geology of the Northwest African Continental Margin (Von Rad, U., Hinz, K., Sarthein, M. & Seibold, E., editors). Springer-Verlag, Berlin.Google Scholar