Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T17:35:04.103Z Has data issue: false hasContentIssue false

Origin of kerolite and associated Mg clays in palustrine-lacustrine environments. The Esquivias deposit (Neogene Madrid Basin, Spain)

Published online by Cambridge University Press:  09 July 2018

M. Pozo
Affiliation:
Dpto. QA Geología y Geoquímica, UAM, Cantoblanco 28049 Madrid
J. Casas
Affiliation:
Centro de Ciencias Medioambientales, CSIC, Serrano 115, 28006 Madrid, Spain

Abstract

The composition, texture and genetic evolution of kerolite and related Mg clays belonging to the Intermediate Unit of the Miocene from the Madrid Basin have been studied. About 400 samples from the Esquivias deposit were analysed by several mineralogical and/or chemical techniques. Two genetic pathways for the development of Mg clays during early diagenesis have been observed: (1) mudflat environment: Al-smectite (beidellite) → Mg-smectite (saponite); and (2) palustrine environment: Si-Mg gel → kerolite → kerolite-stevensite → stevensite.

In the mudflat deposit the transformation processes predominate, whilst in the palustrine environment, kerolite is neoformed, probably from a gel-like medium. Stevensite seems to have originated from the transformation of mixed-layer kerolite-Mg-smectite, but also through neoformation at a later stage.

The textural features, isotopic data and sedimentary evolution within each lithofacies are indicative of shallowing-upward sequences with development of palaeosols. A post-sedimentary origin for sepiolite, calcite, authigenic quartz, zeolites and baryte is inferred.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberdi, M.T., Hoyos, M., Junco, F., Lopez Martinez, N., Morales L & Soria, D. (1984) Biostratigraphy and sedimentary evolution of continental Neogene in the Madrid area. Paleobio. Continent. 14, 4768.Google Scholar
Badaut, D. & Risacher, F. (1983) Authigenic smectite on diatom frustules in Bolivian saline lakes. Geochim. Cosmochim. Acta. 47, 363375.CrossRefGoogle Scholar
Barahona, E. (1974) Arcillas de ladrilleria de la Provincia de Granada. Evaluation de algunos Ensayos de Materias Primas. Tesis Doctoral, Univ. Granada, Spain.Google Scholar
Bartow, J.A. (1994) Tuffaceous ephemeral lake deposits on an alluvial plain, middle Tertiary of central California. Sedimentology. 41, 215232.CrossRefGoogle Scholar
Bellanca, A., Calvo LP., Censi, P., Neri, R. & Pozo, M. (1992) Recognition of lake-level changes in Miocene lacustrine units, Madrid Basin, Spain. Evidence from facies analysis, isotope geochemistry and clay mineralogy. Sedim. Geol. 76, 135153.CrossRefGoogle Scholar
Blanco, J.A., Fernandez Macarro, B. & Vicente, A. (1992) Un paleosuelo en la unidad intermedia de la Cuenca de Madrid: el yacimiento de sepiolita de Parla. Actas del III Congreso Geológico de Espana, Salamanca. 1, 206215.Google Scholar
Bradley, W.H. & Fahey, J.J. (1962) Occurrence of stevensite in the Green River Formation of Wyoming. Am. Miner. 47, 363375.Google Scholar
Brindley, G.W., Bish, D.L. & Wan, H.M. (1977) The nature of kerolite, its relation to talc and stevensite. Mineral. Mag. 41, 443452.CrossRefGoogle Scholar
Calvo, J.P., Jones, B.F., Bustillo, M., Fort, R., Alonso, A.M. & Kendall, C. (1995) Sedimentology and geochemistry of carbonates from lacustrine sequences in the Madrid Basin, Central Spain. Chem. Geol. 123, 173191.CrossRefGoogle Scholar
Cerling, T.E. & Hay, R.L. (1986) An isotopic study of paleosol carbonates from Olduvai Gorge. Quat. Res. 25, 6378.CrossRefGoogle Scholar
Clauer, N., O'Neil, J.R., Bonnot-Courtois, C.H. & Holtzapffel, O. (1990) Morphological, chemical and isotopic evidence for an early diagenetic evolution of detrital smectite in marine sediments. Clays Clay Miner. 38, 3346.CrossRefGoogle Scholar
Decarreau, A. (1980) Cristallogenèse expérimentale des smectites magnésiennes: hectorite, stevensite. Bull. Mineral. 103, 579590.Google Scholar
Domínguez, M.C. (1994) Mineralogia y sedimentologia del Neageno del sector Centro Occidental de la Cuenca del Tajo. Tesis Doctoral, UCM, Spain.Google Scholar
Doval, M., Domínguez, M.C, Brell, J.M. & Garcia Romero, E. (1985) Mineralogia y sedimentologia de las facies distales del borde norte de la Cuenca del Tajo. Bol. Soc. Esp Miner. 8, 257269.Google Scholar
Eberl, D.D., Jones, B.F. & Khoury, H.N. (1982) Mixed layer kerolite-stevensite from the Amargosa Desert, Nevada. Clays Clay Miner. 30-5, 321326.CrossRefGoogle Scholar
Faust, G.T., Hathaway, J.C. & Millot, G. (1959) A restudy of stevensite and allied minerals. Am. Miner. 44, 342370.Google Scholar
Galàn, E., Alvarez, A. & Esteban, M.A. (1981) Occurrence of stevensite at the Vallecas sepiolite deposit (Madrid). 7th Int. Clay Conf. Bologna-Pavia. Abstracts, 98-99.Google Scholar
Güven, N. (1988) Smectites. Pp. 497-559 in: Hydrous phyllosilicates (exclusive of micas). (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington DC, USA.Google Scholar
Hay, R.L. & Stoessell, R.K. (1984) Sepiolite in the Amboseli Basin of Kenya: a new interpretation. Pp. 125-136 in: Palygorskite-Sepiolite, Occurrence, Genesis and Uses. (Singer, A. & Galàn, E., editors). Developments in Sedimentology, 37. Elsevier, Amsterdam, The Netherlands.Google Scholar
Hay, R.L., Pexton, R.E., Teague, T.T. & Kyser, T.K. (1986) Spring related carbonate rocks, Mg clays, and associated minerals in Pliocene deposits of the Amargosa desert, Nevada and California. Geol. Soc. Amer. Bull. 97, 14881503.2.0.CO;2>CrossRefGoogle Scholar
Hay, R.L., Hughes, R.E., Kyser, T.K, Glass, H.D. & Liu, J. (1995) Magnesium-rich clays of the Meerschaum mines in the Amboseli basin, Tanzania and Kenya. Clays Clay Miner. 43, 455466.CrossRefGoogle Scholar
Herráez, M.I., Rusco, P.L. & Fernández, A. (1987) Relaciones entre las características químicas e isotópicas en el sistema de flujo del acuifero detritico de Madrid. IV Simposio de Hidrogeología y Recursos Hidraúlicos, Palma de Mallorca. 11, 5164.Google Scholar
Jeans, C.V. (1984) Patterns of mineral diagenesis: an introduction. Clay Miner. 19, 263270.CrossRefGoogle Scholar
Jones, B.F. (1986) Clay mineral diagenesis in lacustrine sediments. U.S. Geol. Surv. Bull. 1578, 291300.Google Scholar
Jones, B.F. & Galán, E. (1988) Sepiolite and palygorskite. Pp. 631-674 in: Hydrous Phyllosilicates. (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington DC, USA.Google Scholar
Jones, B.F. & Weir, A.H. (1983) Clay minerals of Lake Abert, an alkaline, saline lake. Clays Clay Miner. 31, 161172.CrossRefGoogle Scholar
Khoury, H.H., Eberl, D.D. & Jones, B.F. (1982) Origin of magnesium clays from the Amargosa desert, Nevada. Clays Clay Miner. 30, 327336.CrossRefGoogle Scholar
Lomoschitz, A., Calvo, J.P. & Ordonez, S. (1985) Sedimentologia de las facies detriticas de la unidad intermedia del Mioceno al sur y este de Madrid. Estudios Geol. 41, 343358.CrossRefGoogle Scholar
Maksimovic, Z. (1966) P-Kerolite pimelite series from Goles Mountain, Yugoslavia. Proc. Int. Clay Conf., Jerusalem. 1, 97105.Google Scholar
Martín de Vidales, J.L., Pozo, M. & Casas, J. (1996) Evidences of stevensite formation from kerolite/ stevensite mixed layers. Influence of alkalinity and silica activities. Pp. 134-136 in: Advances in Clay Minerals. (Ortega, , Lopez Galindo, & Palomo, , editors). Granada, Spain.Google Scholar
Martín de Vidales, J.L., Casas, J., Guijarro, J. & Martin Patino, M.T. (1988a) Origen de arcillas aluminicas en horizontes de alteration de materiales graniticos del borde sur de la Sierra de Guadarrama. Estudios Geol. 44, 391398.Google Scholar
Martín de Vidales, J.L., Pozo, M., Medina, J.M. & Leguey, S. (1988b) Formation de sepiolita-paligorskita en litofacies lutitico-carbonàticas en el sector de Borox- Esquivias (Cuenca de Madrid). Estudios Geol. 44, 718.Google Scholar
Martín de Vidales, J.L., Pozo, M., Alia, J.M., Garcia Navarro, F. & Rull, F. (1991) Kerolite-stevensite mixed-layers from the Madrid Basin, Central Spain. Clay Miner. 26, 329342.CrossRefGoogle Scholar
Moreno, A., Pozo, M. & Martín Rubí, J.A.(1995) Geoquimica del yacimiento de arcillas magnésicas de Esquivias. Cuenca de Madrid. Bol. Geol. Miner. 106, 559570.Google Scholar
Moreno de Guerra, R. & López Vera, F. (1977) Anàlisis de fluor y silicio en las aguas subterràneas del Terciario detritico de Madrid. Proc. 2° Congreso Int. hidrogeologia, Pamplona. 691-702.Google Scholar
Ordóñez, S., Calvo, J.P., García del Cura, M.A., Alonso, A.M. & Hoyos, M. (1991) Sedimentology of sodium sulphate deposits and special clays in lacustrine sequences of the Tertiary Madrid Basin (Spain). I.A.S. Spec. Publ. 13, 3753.Google Scholar
Pozo, M. & Casas, J. (1995) Distribution y caracterización de litofacies en el yacimiento de arcillas magnésicas de Esquivias (Neógeno, Cuenca de Madrid). Bol. Geol. Miner. 106, 265282.Google Scholar
Pozo, M., Casas, J., Moreno, A. & Medina, J.A. (1992a) Origin of sedimentary magnesium bentonites in marginal lacustrine deposits (Madrid Basin, Spain). Miner. Petrog. Acta. 35-A, 45-54.Google Scholar
Pozo, M., Casas, J., Moreno, A. & Medina, J.A. (1992b) Magnesium clay paleosoils from Madrid Neogene Basin (Spain). Miner. Petrog. Acta. 35-A, 235-244.Google Scholar
Pozo, M., Moreno, A., Casas, J. & Martín Rubí, J.A. (1993) Mineralogy and geochemistry of sedimentary bentonites related to alluvial fan arkosic facies (Neogene Madrid Basin, Spain). Chem. Geol. 107, 457461.CrossRefGoogle Scholar
Pozo, M., Moreno, A., Casas, J. & Martín Rubí, J.A. (1997) Mineralogía y geoquímica de litofacies lacustres marginales en el sector de Pinto (Cuenca de Madrid). Cuadernos Geol. Ibérica. 22, 407430.Google Scholar
Pozo, M., Casas, J., Medina, J.A., Moreno, A. & Martín Rubí, J.A. (1995) Mineralogénesis de ceolitas en faciès lacustres palustres con arcillas magnésicas de la Cuenca de Madrid. Bol. Soc. Esp. Miner. 18-2, 78.Google Scholar
Pozo, M., Martín de Vidales, J.L., Vigil, R., Medina, J.A. & Leguey, S. (1985) Neoformaciín de esmectitas magnésicas relacionadas con procesos de paleovertisolización en sedimentos fluvio-lacustres de la “Unidad intermedia del Mioceno” en la Cuenca de Madrid. Acta Geol. Hispánica. 21-22, 6371.Google Scholar
Redondo, R., Cuevas, J., Moreno, A., Pozo, M. & Leguey, S. (1991) Propiedades superficiales de las arcillas magnésicas de la Cuenca de Madrid. Aplicación del método del azul de metileno. Bol. Soc. Esp. Miner. 14, 4756.Google Scholar
Reynolds, R.C. (1985) NEWMOD, a Computer Program for the Calculation of one dimensional Diffraction Patterns of Mixed Layered Clays. R.C. Reynolds, Hanover, USA.Google Scholar
Stoessell, R.K. (1988) 25°C and 1 atm. dissolution experiments of sepiolite and kerolite. Geochim. Cosmochim. Acta. 52, 365374.CrossRefGoogle Scholar
Suquet, H. & Pezerat, H. (1988) Comments on the classification of trioctahedral 2:1 phyllosilicates. Clays Clay Miner. 36, 184186.CrossRefGoogle Scholar
Tettenhorst, R. & Moore, E.M. (1978) Stevensite oolites from the Green River Formation of Central Utah. J. Sed. Pet. 48, 587594.Google Scholar
Trauth, N. (1977) Argiles évaporitiques dans la sédimentation carbonatée continentale et épicontinentale tertiaire. Bassins de Paris, de Mormoiron et de Salinelles (France). Jbel Ghassoul (Maroc). Sci. Géol.Mém. 49. 1-195.Google Scholar
van der Marel, H.W. (1966) Quantitative analysis of clay minerals and their admixtures. Contrib. Mineral. Petrol. 12, 96138.CrossRefGoogle Scholar
Weaver, C.E. (1989) Clays, Mud and Shales. Elsevier, Amsterdam, The Netherlands.Google Scholar