Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T20:26:01.290Z Has data issue: false hasContentIssue false

Optical Properties of Organic Complexes of Montmorillonite

Published online by Cambridge University Press:  09 July 2018

R. Greene-Kelly*
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts

Abstract

The optical properties of oriented montmorillonite aggregates were measured in both non-complexing and complexing media. The changes observed lead to the following conclusions. Preparing oriented aggregates of clays for optical examination requires considerable care to avoid spurious orientation effects. In determining the optical constants of montmorillonite aggregates the medium must wet and enter the aggregate readily and displace the air, particularly from the smaller pores, otherwise large form birefringence effects of uncertain magnitude will occur. A suitable medium is likely to be one that complexes montmorillonite. The complex it forms must have relatively isotropic interlamellar layers and this is more likely with isodimensional molecules. Consideration of complexes with simple compounds suggests that the intrinsic birefringence of aggregates is overestimated by conventional techniques.

Forming complexes with aromatic compounds usually results in the birefringence of the aggregate being essentially determined by the orientation and anisotropy of the intercalated molecules.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambronn, H. & Frey, A. (1926) Das Polarizations - Mikroskop. Leipzig.Google Scholar
Brown, G. & Stephen, I. (1959) Am. Miner, 44, 251.Google Scholar
Correns, C.W. & Mehmel, M. (1936) Z. Krist. 94, 337.Google Scholar
Derjaguin, B.V. & Greene-Kelly, R. (1964) Trans. Faraday Soc. 60, 449.Google Scholar
Emerson, W.W. (1956) Nature, Lond. 178, 1248.CrossRefGoogle Scholar
Farmer, V.C. & Mortland, M.M. (1966) J. chem. Soc. A, 344.Google Scholar
Greene-Kelly, R. (1955) Trans. Faraday Soc, 51, 416, 425.Google Scholar
Greene-Kelly, R. (1956a) J. colloid Sci. 11, 77.CrossRefGoogle Scholar
Greene-Kelly, R. (1956b) J. phys. Chem. 60, 808.CrossRefGoogle Scholar
Greene-Kelly, R. (1956c) Trans. Faraday Soc. 52, 1281.CrossRefGoogle Scholar
Greene-Kelly, R. (1959) Nature, Lond. 184, 181.Google Scholar
Greene-Kelly, R. (1963) Clays Clay Miner. 10, 469.Google Scholar
GRM, R.E. (1934) J. sedim. Petrol. 4, 45.Google Scholar
Hartshorne, N.H. & Stuart, A. (1960) Crystals and the Polarizing Microscope, p. 298. Arnold 3rd edition.Google Scholar
Hermans, P.H. (1946) Contributions to the Physics of Cellulose fibres. Amsterdam.Google Scholar
Hermans, P.H. (1949) Colloid Science (H.R. Kruyt, editor) 2, Chap. XH. Elsevier.Google Scholar
Johannsen, A. (1918) Manual of Petrographic Methods, p. 451. McGraw-Hill.Google Scholar
Lafeber, D. & Willoughby, D. (1967) Proc. 3rd Asian Reg. Conf. Soil Mech. Fndt. Eng. 186.Google Scholar
Le Fevre, C.G. & Le Fèvrb, R.J.W. (1954) J. chem. Soc. 1577.Google Scholar
Le Fevre, C.G. & Le Fevre, R.J.W. (1955) Rev. pure appi. Chem. 5, 261.Google Scholar
Le Fevre, R.J.W. & Sundaram, A. (1962) J. chem. Soc. 4756.Google Scholar
Mitchell, J.K. (1956) Proc. Highway Res. Board, 35, 693.Google Scholar
Morgenstern, N.R. & Tchalenko, J.S. (1967a) Proc. Geotechnical Conf. 1, 147.Google Scholar
Morgenstern, N.R. & Tchalenko, J.S. (1967b) Proc. Royal Soc. London Ser. A. 300, 235.Google Scholar
Ross, C.S. & Hendricks, S.B. (1945) Minerals of the Montmorillonite Group Prof. Paper. 205B. U.S. Geol. Survey, Washington.Google Scholar
Serratosa, J.M. (1968) Am. Miner. 53, 1244.Google Scholar
Stokes, A.R. (1963) The Theory of the Optical Properties of Inhomogeneous Materials. Chap. IV, p. 36. Spon.Google Scholar
Tchalenko, J.S. (1968) Tectonophysics, 6(2), 159.CrossRefGoogle Scholar
Van Baren, F.A. (1936) Z. Krist. 95, 464.Google Scholar
Vendel, M. (1945) Chemie Erde 15, 325.Google Scholar
Wiener, O. (1912) Abh. sacks Akad. Wiss. Math. - Phys. Kl. 32, 509.Google Scholar