Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T22:36:43.995Z Has data issue: false hasContentIssue false

Occurrences of kaolin in Koutaba (west Cameroon): Mineralogical and physicochemical characterization for use in ceramic products

Published online by Cambridge University Press:  02 January 2018

A. Nkalih Mefire*
Affiliation:
Laboratory of Clays, Geochemistry and Sedimentary Environments, Department of Geology, University of Liège, Quartier Agora, 14 Allée du 6 Août, Bât. B18, Sart Tilman - 4000, Liège, Belgium Laboratory of Applied Geology-Metallogeny, Department of Earth Sciences, University of Yaoundé I, P.O. Box. 812, Yaoundé, Cameroon
A. Njoya
Affiliation:
Fine Arts Institute of Foumban, University of Dschang, P.O. Box 31, Foumban, Cameroon
R. Yongue Fouateu
Affiliation:
Laboratory of Applied Geology-Metallogeny, Department of Earth Sciences, University of Yaoundé I, P.O. Box. 812, Yaoundé, Cameroon
J.R. Mache
Affiliation:
Local Material Promotion Authority, P.O. Box, 2396 Yaoundé, Cameroon
N.A. Tapon
Affiliation:
Architecture, Geology, Environment and Construction, Sart Tilman Chemin des Chevreuils (B52), University of Liège, 4000 Liège, Belgium
A. Nzeukou Nzeugang
Affiliation:
Local Material Promotion Authority, P.O. Box, 2396 Yaoundé, Cameroon
U. Melo Chinje
Affiliation:
Local Material Promotion Authority, P.O. Box, 2396 Yaoundé, Cameroon
P. Pilate
Affiliation:
Belgian Ceramic Research Center, 4, Avenue Gouverneur Cornez - B-7000 Mons, Belgium
P. Flament
Affiliation:
Belgian Ceramic Research Center, 4, Avenue Gouverneur Cornez - B-7000 Mons, Belgium
S. Siniapkine
Affiliation:
Laboratory of Clays, Geochemistry and Sedimentary Environments, Department of Geology, University of Liège, Quartier Agora, 14 Allée du 6 Août, Bât. B18, Sart Tilman - 4000, Liège, Belgium
A. Ngono
Affiliation:
Laboratory of Applied Geology-Metallogeny, Department of Earth Sciences, University of Yaoundé I, P.O. Box. 812, Yaoundé, Cameroon
N. Fagel
Affiliation:
Laboratory of Clays, Geochemistry and Sedimentary Environments, Department of Geology, University of Liège, Quartier Agora, 14 Allée du 6 Août, Bât. B18, Sart Tilman - 4000, Liège, Belgium

Abstract

Thirty clay samples collected from three hills in Koutaba (west Cameroon) were characterized in order to evaluate their potential use as raw materials for ceramics. After preliminary mineralogical identification by X-ray diffraction, three representative samples from the three different hills, referred to hereafter as K1M, K2M and K3M, were selected for further investigation by X-ray fluorescence, plasticity, granularity and thermogravimetric analysis. The main clay minerals are kaolinite (32–51%) and illite (up to 12%). Additional major phases are quartz (32–52%), goethite (6–7%) and feldspars (0–4%). The chemical composition showed variable amounts of SiO2 (60–72%), Al2O3 (15–20%) and Fe2O3 (1–9%), in accordance with the quartz abundance in all of the samples studied. The particle-size distribution showed a large proportion of silty fraction (64–88%) with moderate sandy (9–19%) and clayey fractions ( < 5% for K2M, 12% for K1M and 20% for K3M). All of the clays showed moderate plasticity-index values (8–11%). Because of these characteristics, K1M and K3M may be suitable for use in common bricks and hollow ceramic products. Sieving or the addition of ball clays is recommended to increase the plasticity of sample K2M for use in common bricks.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ASTM-American Society for Testing Materials (2000) Standard test method for liquid limit, plastic limit, and plasticity index of soils. ASTM D-4318, 14 pp.Google Scholar
Boski, T., Pessoa, J., Pedro, P., Thorez, J., Dias, J.M.A. & Hall, I.R. (1998) Factors governing abundance of hydrolysable amino acids in the sediments from the N.W. European Continental Margin (47—50°N). Progress in Oceanography, 42, 145164.Google Scholar
Christidis, G.E. (2011) Industrial clays. Pp. 341-414 in: Advances in the Characterization of Industrial Clays (G.E. Christidis, editor). EMU Notes in Mineralogy, 9, European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, London.Google Scholar
Cook, H.E., Johnson, P.D., Matti, J.C. & Zemmels, I. (1975) Methods of sample preparation and X-ray diffraction data analysis. Pp. 997—1007 in: X-ray Mineralogy Laboratory (A.G. Kaneps, editor). Initial Reports of the DSDP, Printing Office, Washington D.C. Google Scholar
Diko, M.L. & Ekosse, G.E. (2012) Physicochemical and mineralogical considerations of Ediki sandstone-hosted kaolin occurrence, South West Cameroon. International Journal of the Physical Sciences, 7, 501—507.Google Scholar
Dondi, M., Fabbri, B. & Laviano, R. (1992) Characteristics of the clays utilized in the brick industry in Apulia and Basilicata (southern Italy). Mineralogica Petrologica Acta, 35, 181191.Google Scholar
Ekosse, G.E. (2010) Kaolin deposits and occurrences in Africa: Geology, mineralogy and utilization. Applied Clay Science, 50, 212236.Google Scholar
Fadil-Djenabou, S., Ndjigui, P.D. & Mbey, J.A. (2014) Mineralogical and physicochemical characterization of Ngaye alluvial clays (Northern Cameroon) and assessment of its suitability in ceramic production. Journal of Asian Ceramic Societies, 127, 1—9.Google Scholar
Fagel, N., Boski, T., Likhoshway, L. & Oberhaensli, H. (2003) Late Quaternary clay mineral record in Central Lake Baikal (Academician Ridge, Siberia). Palaeogeography, Palaeoclimatology, Palaeoecology, 193, 159179.CrossRefGoogle Scholar
Fernández-Caliani, J.C., Galán, E., Aparicio, P., Miras, A. & Márquez, M.G. (2010) Origin and geochemical evolution of the Nuevo Montecastelo kaolin deposit (Galicia, NW Spain). Applied Clay Science, 43, 9197.Google Scholar
Hajjaji, M., Kacim, S., Alami, A., El Bouadili, A. & El Mountassir, M. (2001) Chemical and mineralogical characterization of a clay taken from the Moroccan Meseta and a study of the interaction between its fine fraction and Methylene blue. Applied Clay Science, 20, 112.CrossRefGoogle Scholar
Holtz, R.D. & Kovacs, W.D. (1981) An Introduction to GeotechnicalEngineering, pp. 77—107. Prentice-Hall, Englewood Cliffs, New Jersey, USA.Google Scholar
Inoue, A. (1995) Formation of clay minerals in hydrother-mal environment. Pp. 268-329 in: Origin and Mineralogy of Clays: Clays and the Environment (B. Velde, editor). Springer, Berlin.Google Scholar
Kamseu, E., Leonelli, C., Boccaccini, D.N., Veronesi, P., Miselli, P., Perllacani, G. & Chinje Melo, U. (2007) Characterisation of porcelain compositions using two china clays from Cameroon. Ceramics International, 33, 851857.CrossRefGoogle Scholar
Kornmann, M. & CTTB (2005) Matériaux de Construction en Terre Cuite, Fabrication et Propriétés. Editions Septima, Paris, pp. 3334.Google Scholar
Leonards, G.A. (1968) Predicting settlement of buildings on clay soils foundation engineering. Chicago Soil Mechanics Lecture Series, 3, 41—50.Google Scholar
Mache, J.R., Signing, P., Njoya, A., Kunyu, F., Mbey, J.A., Njopwouo, D. & Fagel, N. (2013) Smectiteclay from the Sabga deposit (Cameroon): mineralogical and physico-chemical properties. Clay Minerals, 48, 499512.Google Scholar
Mohmoudi, S., Srasra, E. & Zargouni, F. (2008) The use of Tunisian Barremian clay in the traditional ceramic industry: optimization of ceramic properties. Applied Clay Science, 42, 125129.Google Scholar
Moore, D. & Reynolds, R.C. Jr. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, 332 pp.Google Scholar
Moundi, A., Wandji, P., Bardintzell, J.M., Menard, J.J., Okomo Atouba, L.S., Mouncherou, O.F., Reusser, E., Bellon, H. & Tchoua, F.M. (2007) Les basaltes eocenes a affinité transitionnelle du Plateau Bamoun, témoin d'un réservoir mantellique enrichi sous la ligne volcanique du Cameroun. Comptes Rendus Géoscience, 339, 396106.CrossRefGoogle Scholar
Ndjigui, P.D., Beauvais, A., Fadil-Djenabou, S. & Ambrosi, J.P. (2014) Origin and evolution of Ngaye River alluvial sediments, Northern Cameroon: Geochemical constraints. Journal of African Earth Sciences, 100, 164178.CrossRefGoogle Scholar
NgonNgon, G.F., Mbog, M.B., Etame, J., Ntamak-Nida, M.J., Logmo, E.O., Gerard, M., Yongue-Fouateu, R. & Bilong, P. (2014) Geochemistry of the Paleocene-Eocene and Miocene-Pliocene clayey materials of the eastern part of the Wouri River (Douala sub-basin, Cameroon): Influence of parent rocks. Journal of African Earth Sciences, 91, 110124.CrossRefGoogle Scholar
Nguetnkam, J.P., Kamga, R., Villiéras, F., Ekodeck, G.E. & Yvon, J. (2008) Altération différentielle du granite en zone tropicale. Exemple de deux séquences étudiées au Cameroun (Afrique Centrale). Comptes Rendus Geoscience, 340, 451461.Google Scholar
Ngun, B.K., Mohamad, H., Sulaiman, S.K., Okada, K. & Ahmad, Z.A. (2011) Some ceramic properties of clays from central Cambodia. Applied Clay Science, 53, 3341.Google Scholar
Njonfang, E., Moreau, C. & Tchoua, M.F. (1998) La bande mylonitique Foumban-Bankim, Ouest-Cameroun. Une zone de cisaillement de haute temperature. Comptes Rendus Academie Sciences, 327, 735741.Google Scholar
Njoya, A., Ekodeck, G.E., Nkoumbou, C., Njopwouo, D. & Tchoua, M.F. (2001) Matériaux argileux au Cameroun: gisements et exploitation. Pp. 13-30 in: Actes de la premiere conférence sur la valorisation des matériaux Argileux au Cameroun (C. Nkoumbou & D. Njopwouo, editors). Yaoundé, Cameroun.Google Scholar
Njoya, A., Nkoumbou, C., Grosbois, C., Njopwouo, D., Njoya, D., Courtin, A.N., Yvon, J. & Martin, F. (2006) Genesis of Mayouom kaolin deposit (western Cameroon). Applied Clay Science, 32, 125140.CrossRefGoogle Scholar
Nyakairu, G.W.A., Kurzweil, H. & Koeberl, C. (2002) Mineralogical, geochemical, and sedimentological characteristics of clay deposits from central Uganda and their applications. Journal of African Earth Sciences. 35, 123134.Google Scholar
Nzeugang Nzeukou, A., Fagel, N., Njoya, A., Beyala Kamgang, V., Eko Medjo, R. & Chinje Melo, U. (2013) Mineralogical and physico-chemical properties of alluvial clays from Sanaga valley (Center, Cameroon): suitably for ceramic application. Applied Clay Science, 83-84, 238243.CrossRefGoogle Scholar
Pialy, P., Nkoumbou, C., Villiéras, F., Razafitianamaharavo, A., Barres, O., Pelletier, M., Ollivier, G., Bihannic, I., Njopwouo, D., Yvon, J. & Bonnet, J.-P. (2008) Characterization for industrial applications of clays from Lembo deposit, Mount Bana (Cameroon). Clay Minerals, 43, 415435.CrossRefGoogle Scholar
Ptáček, P., Kubátová, D., Havlica, J., Brandštetr, J., Šoukal, F. & Opravil, T. (2010) The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by thermogravi-metric analysis. Powder Technology, 204, 222—227.CrossRefGoogle Scholar
Reeves, G.M., Sims, I. & Cripps, J.C. (2006) Brick and other ceramic products. Pp. 400—425 in: Clay Materials Used in Construction (G.M. Reeves, L. Sims & J.C. Cripps, editors). Engineering Geology Special Publication, 21, Geological Society, London.Google Scholar
Tardy, Y. (1993) Pétrologie des Latérites et des Sols Tropicaux. Masson, Paris, 535 pp.Google Scholar
Tatchum Noutchogwe, C., Tabod, C., Koumetio, F. & Manguelle-Dicoum, E. (2011) A gravity model study for differentiating vertical and dipping geological contacts with application to a Bouguer gravity anomaly over the Foumban shear zone, Cameroon. Geophysical Society of Finland, 47, 4355.Google Scholar
Traoré, K., Kabre, T.S. & Blanchart, P. (2001) Sintering of a clay from Burkina Faso by dilatometry. Influence of the applied load and the pre-sintering heating rate. Ceramics International, 27, 875882.CrossRefGoogle Scholar
Wandji, P., Tchokona Seuwui, D., Bardintzeff, J.-M., Bellon, H. & Platevo, B. (2008) Rhyolites of the Mbepit Massif in the Cameroon Volcanic Line: an early extrusive volcanic episode of Eocene age. Mineralogy and Petrology, 94, 271286.CrossRefGoogle Scholar
Wang, H., Li, C., Peng, Z. & Zhang, S. (2011) Characterization and thermal behaviour of kaolin. Journal of Thermal Analysis and Calorimetry, 105, 157160.CrossRefGoogle Scholar
Winkler, H.G.F. (1954) Bedeutung der Kongrößenverteilung und des Mineralbestandes von Tonen für die Herstellung grobkeramischer Erzeugnisse. Berichte der Deutschen Keramischen Gesellschaft, 31, 337343.Google Scholar
Wotchoko, P., Wandji, P., Bardintzeff, J.M. & Bellon, H. (2005) Données pétrologiques et géochronologiques nouvelles sur le volcanisme alcalin néogene à récent de la rive ouest du Noun (plaine du Noun, Ligne du Cameroun). Review of the Bulgarian Geological Society, 66, 97105.Google Scholar
Wouatong, A.S.L., Kitagawa, R., Takeno, S., Tchoua, M.F., Talla, V. & Njopwouo, D. (1996) Morphological transformation of kaolin minerals from granite saprolite in the western part of Cameroon. Clay Science, 10, 67—81.Google Scholar
Wouatong, A.S.L., Yerima, B.P.K., Yongue Fouateu, R., Mvondo Ze, A. & Ekodeck, G.E. (2013) The origin of etch pits recorded on residual grain surfaces from kaolinized granitic rocks west region, Cameroon. Earth Science Research, 2, 93110.CrossRefGoogle Scholar
Yongue Fouateu, R., Yemefack, M., Wouatong, A.S., Ndjigui, P.D. & Bilong, P. (2009) Contrasted mineral-ogical composition of the laterite cover on serpenti-nites of Nkamouna-Kongo, southeast Cameroon. Clay Minerals, 44, 221237.CrossRefGoogle Scholar
Yvon, J., Lietard, O. & Cases, J.M. (1982) Minéralogie des argiles kaoliniques des Charentes. Bulletin de Minéralogie, 105, 431437.Google Scholar