Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T15:37:29.749Z Has data issue: false hasContentIssue false

Occurrence of a ferrous, trioctahedral smectite in Recent sediments of Atlantis II Deep, Red Sea

Published online by Cambridge University Press:  09 July 2018

D. Badaut
Affiliation:
Laboratoire de Géochimie, ERA 765 du CNRS, Université de Paris-Sud, 91405 Orsay Cedex
G. Besson
Affiliation:
Laboratoire de Cristallographie, ERA 841 du CNRS, Université d'Orléans, 45046 Orleans Cedex, France
A. Decarreau
Affiliation:
Laboratoire de Géochimie, ERA 765 du CNRS, Université de Paris-Sud, 91405 Orsay Cedex
R. Rautureau
Affiliation:
Laboratoire de Cristallographie, ERA 841 du CNRS, Université d'Orléans, 45046 Orleans Cedex, France

Abstract

A trioctahedral, ferrous smectite has been located in the uppermost deposits of Atlantis II Deep, SW basin, Red Sea. This clay is very unstable when removed from its environment of formation and, for example, oxidizes during desiccation under laboratory conditions. Only X-ray transmission diffraction study of the mud itself demonstrates the trioctahedral character of the clay. Electron-optical investigation shows that oxidation within the octahedral sheet creates a juxtaposition of dioctahedral and trioctahedral sub-lattices in the same particle. Ferrous smectite authigenesis is located near the hydrothermal spring outlets of the Atlantis II Deep.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, A.I., Dollase, W.A. & Fleet, M.E. (1983) A Mössbauer study of saponite in layer 2 basalt. Init. Rep. Deep Sea Drilling Project 69, 585588. US Gov. Print. Off. Google Scholar
Badaut, D. & Risacher, H. (1983) Authigenic smectite on diatom frustules in Bolivian saline lakes. Geochim. Acta 47, 363375.Google Scholar
Bäcker, H. & Richter, H. (1973) Die rezente hydrothermal-sedimentäre Lägerslatte Atlantis II. Tief im Roten Meer. Geol. Rundsch. 62, 697741.Google Scholar
Bertaut, E.F., Burlet, P. & Chappert, J. (1965) Sur l'absence d'ordre magnétique dans la forme quadratique de FeS. Solid State Comm. 3, 335338.Google Scholar
Besson, G., Bookin, A.S., Dainyak, L.G., Rautureau, M., Tsipursky, J.I., Tchourar, C. & Drits, V.A. (1983) Use of diffraction and Mössbauer methods for the structural and crystallochemical characterization of nontronites. J. Appl. Cryst. 16, 374383.Google Scholar
Bischoff, J.L. (1972) A ferroan nontronite from the Red Sea geothermal system. Clays Clay Miner. 20, 217223.CrossRefGoogle Scholar
Bonnin, D., Muller, S. & Calas, G. (1982) Le fer dans les kaolins. Etude par spectrométries RPE Mössbauer, EXAFS. Bull. Minér. 105, 467475.Google Scholar
Bonnot-Courtois, C., Lallier-Verges, E. & Clauer, N. (1985) Les traces dans les cortèges minéralogiques de divers contextes hydrothermaux. Bull. Soc. Fr. Min, Crist. (à paraitre).Google Scholar
Brindley, G.W. & Brown, G. (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London.Google Scholar
Butuzova, G.Y., Drits, V.A., Lisitsyna, N.A., Tsipursky, S.I. & Dimitrik, A.L. (1979) Formation dynamics of clay minerals in orebearing sediments in the Atlantis II basin, Red Sea. Lithol. Miner. Resources 14, 2332.Google Scholar
Cocherie, A. (1981) Distribution des éléments en traces et des terres rares dans les sédiments des fosses de la Mer Rouge. Résumé Scientifique du BRGM, 11831185.Google Scholar
Cody, J.M.D. (1980) Clay minerals and their transformations studied with nuclear techniques: the contribution of Mössbauer spectroscopy. Atomic Energy Review 181, 73124.Google Scholar
Cole, T.G. (1983) Oxygen isotope geothermometry and origin of smectite in the Atlantis II Deep, Red Sea. Earth Planet. Sci. Lett. 66, 166176.Google Scholar
Courtois, C. & Treuil, M. (1977) Distribution des terres rares et de quelques éléments en traces dans les sédiments récents des fosses de la Mer Rouge. Chem. Geol. 20, 5772.Google Scholar
Decarreau, A. (1983) Etude expérimentale de la cristallogenèse des smectites. Mesure de coefficients de partage smectite di-trioctaédriques/solution aqueuse pour les méaux M de la première série de transition. Sci. Géol. 74, 191 pp.Google Scholar
Decarreau, A., Bonnin, D. & Badaut, D. (1985) Cristallogenèse expérimentale à basse température des smectites ferrifères. Clay Miner. (à paraitre).Google Scholar
Degens, E.T. & Ross, D.A. (1969) Hot Brines and Recent Heavy Metal Deposits in the Red Sea. Springer Verlag, Berlin.Google Scholar
Eggleton, R.A. (1977) Nontronite: chemistry and Xray diffraction. Clay Miner. 12, 181194.Google Scholar
Eugster, H.P. & Wonzs, D.R. (1962) Stability relations of ferruginous biotite, annite. J. Petrol. 3, 82125.Google Scholar
Gangas, N.H., Simopoulos, A., Kostikas, A., Vassoglov, N.J. & Filipakis, S. (1973). Mössbauer studies of small particles of iron oxides in soil. Clays Clay Miner. 21, 151160.Google Scholar
Goulart, E.P. (1976) Different smectites types in sediment of the Red Sea. Geol. Jb, D17, 135149.Google Scholar
Hazen, R.M. & Wones, D.R. (1972) The effect of cation substitution on the physical properties of trioctahedral micas. Am. Miner. 57, 103129.Google Scholar
Heller-Kallai, L. & Rozenson, I. (1981) The use of Mössbauer spectroscopy of iron in clay mineralogy. Phys. Chem. Miner. 7, 223238.Google Scholar
Kohyama, N., Shimoda, S. & Sudo, T. (1973) Iron-rich saponite (ferrous and ferric forms). Clays Clay Miner. 21, 229237.Google Scholar
Levinson, L.M. & Treves, D. (1968) Mössbauer study of the magnetic structure of FeS. J. Phys. Chem. Solids 29,22272231.Google Scholar
Mering, J. & Oberlin, A. (1971) The smectites. Pp. 193229 in: The Electron Optical Investigation of Clays (Gard, J. A., editor). Mineralogical Society, London.Google Scholar
Miller, A.R., Densmore, C.D., Degens, E.T., Hathaway, J.C., Manheim, F.T., MacFarlin, P.F., Pocklington, R. & Jokela, A. (1966) Hot brines and recent iron deposits in deeps of the Red Sea. Geochim. Cosmochim. Acta 30, 341359.Google Scholar
Ono, K., Ishikawa, Y. & Ito, A. (1962a) The Mössbauer effect in some iron compounds. J. Phys. Soc. Japan 17, suppl. B1, 125129.Google Scholar
Ono, K., Ito, A. & Hirahara, E. (1962b) Mössbauer study of hyperfine field quadrupole interaction, and isomer shift of Fe in FeS. J. Phys. Soc. Japan 17, 16151620.Google Scholar
Oudin, E., Thisse, Y. & Ramboz, C. (1984) Fluid inclusion and mineralogical evidence for high-temperature saline hydrothermal circulation in the Red Sea. Metalliferous: preliminary results. Marine Mining (à paraitre).Google Scholar
Pottorf, R.J. (1980) Hydrothermal sediments of the Red Sea, Atlantis II Deep. A model for massive sulfide-type ore deposits. PhD. thesis, Pennsylvania State Univ., 193 pp.Google Scholar
Radoslovitch, E.W. (1962) The cell dimensions and symmetry of layer lattice silicates: I. Some structural considerations. II. Regression relations. Am. Miner. 47, 599636.Google Scholar
Rozenson, I. & Heller-Kallai, L. (1977) Mössbauer spectra opf dioctahedral smectites. Clays Clay Miner. 25, 94101.Google Scholar
Schanks, W.C. & Bischoff, J.L. (1977) Ore transport and deposition in the Red Sea geothermal system: a geochemical model. Geochim. Cosmochim. Acta 4l, 15071519.Google Scholar
Temperley, A.A. & Lefevre, H.W. (1966) The Mössbauer effect in marcasite-structure iron compounds. J. Phys. Chem. Solids 27, 8592.Google Scholar
Thisse, Y. (1982) Sédiments métallifères de la fosse Atlantis II (Met Rouge). Contribution à l'étude de leurs caractéristiques minéralogiques et gé;ochimiques. Thèse de Doctorat de 3ème cycle, Univ. Orléans, France.Google Scholar
Warshaw, C.M. (1957) The mineralogy of glauconite. PhD. thesis, Pennsylvania State University.Google Scholar
Wise, W.S. & Eugster, H.P. (1964) Celadonite: synthesis, thermal stability and occurrence. Am. Miner. 49, 10311083.Google Scholar
Zierenberg, R.A. & Shanks, W.C. (1983) Mineralogy and geochemistry of epigenetic features in metalliferous sediments, Atlantis II Deep, Red Sea. Econ. Geol. 78, 5772.Google Scholar