Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T19:51:46.308Z Has data issue: false hasContentIssue false

Occurrence and genesis of palygorskite and associated clay minerals in a Pleistocene calcrete complex, Sde Boqer, Negev Desert, Israel

Published online by Cambridge University Press:  09 July 2018

E. P. Verrecchia
Affiliation:
U.M.R. 5561 C.N.R.S., Centre des Sciences de la Terre, Université de Bourgogne, 6 bd Gabriel, 21000 Dijon, France
M-N. Le Coustumer
Affiliation:
U.R.A. D 1694 C.N.R.S., Centre de Géomorphologie et Transferts de Surface, 24 rue des Tilleuls, 14000 Caen, France

Abstract

Palygorskite and associated clay minerals have been studied in a Pleistocene calcrete complex from the Negev desert (Sde Boqer, Israel). This complex is divided into five main parts: the chalky and marly bedrock overlain by its weathered product, a brecciated calcrete hardpan; the laminar crust; loess pockets trapped in the calcrete; and the overlying soft surficial soil. The distribution of clay minerals is directly dependent on the position of the sample in the calcrete complex. Smectite is inherited from the bedrock in the calcrete with an aeolian enrichment in loess pockets and upper soft soil. The source of kaolinite is mainly detrital, related to desert dust. Illite is partly inherited and partly neoformed in loess pockets and desert surficial soil. The origin of palygorskite is clearly related to precipitation processes from soil solutions, Si and Al ions being provided by the slope and detrital grains trapped in the calcrete, with Mg being provided by the parent rock, the slope and aeolian detrital dolomite. This neoformation occurs mainly around detrital grains such as quartz in the hardpan and along textural transitions in loess pockets and is associated with gypsum in the lower part of the toposequence where the evaporation fluxes are the most important. The existence as coatings around grains and the delicate structure of the fibres are incompatible with a detrital origin. Moreover, no evidence was found to support any transformation of smectite into palygorskite in the solid state. Palygorskite is the last step of the cycle of mobile silica and seems to be a product of late diagenesis in Sde Boqer calcrete.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aba-Husayn, M.M. & Sayegh, A.H. (1977) Mineralogy of the A1-Hasa desert soils (Saudi Arabia). Clays Clay Miner. 25, 138147.Google Scholar
Abtahi, A. (1977) Effect of a saline and alkaline groundwater on soil genesis in semi-arid southern Iran. Soil Sci. Soc. Am. J., 41, 583588.Google Scholar
Al Rawl, G.J. & Sys, C. (1967) A comparative study between Euphrates and Tigris sediments in the Mesopotamian Flood Plain. Pedologie, Gand 17, 187211.Google Scholar
Aqrawi, A.A.M. (1993) Palygorskite in the recent fluviolacustrine and deltaic sediments of southern Mesopotamia. Clay Miner. 28, 153159.Google Scholar
Azmon, E. & Offer, Z.Y. (1989) Pollution of Quaternary cover on aquifers of Eocene chalk in Ramat Hovav industrial area in Israel. Water, Air and Soil Pollution 44, 203214.Google Scholar
Bachmann, G.O. & Machetre, M.N. (1977) Calcic soils and calcretes in the southwestern United States. U.S. Geological Survey, Open-file Report 77-794, 163 pp.Google Scholar
Badraoui, M., Bloom, P.R. & Bouabm, R. (1992) Palygorskite-smectite association in a Xerochrept of the High Chaouia Region of Morocco. Soil Sci. Soc. Am. J., 56, 16401646.Google Scholar
Barshad, I., Halevy, E., Gold, H.A. & Hagin, J. (1956) Clay minerals in some limestones soils from Israel. Soil Sci. 81, 423437.Google Scholar
Beatrle, J.A. (1970) Peculiar features of soil development in parna deposits in the Eastern Riverina, N.S.W. Aust. J. Soil Res. 8, 145156.Google Scholar
Becq-Giraudon, J.-F. & Freytet, P. (1976) L'Oligocbne du fossd de Saint-Maixent (Deux-Sbvres): observations paldontologiques et pdtrographiques sur les calcaires ‘lacustres’ a attapulgite. C. R. Acad. Sci. Paris, 282, 19431946.Google Scholar
Bentor, Y.K., Bodenheimer, W., & Heeler, L. (1963) A reconnaissance survey of the relationship between clay mineralogy and geological environment in the Negev (Southern Israel). J. Sed. Pet. 33, 874903.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep sea clay in Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Amer. Bull. 76, 803832.CrossRefGoogle Scholar
Botha, G.A. & Hughes, J.C. (1992) Pedogenic palygorskite and dolomite in a late Neogene sedimentary succession, northwestern Transvaal, South Africa. Geoderma 53, 139154.Google Scholar
Bradley, W.F. (1940) The structural scheme of attapulgite. Am. Miner 25, 405410.Google Scholar
Caillere, A. & Henin, S. (1961) Palygorskite. Pp. 343–353 in: The X-Ray Identification and Crystal Structures of Clay Minerals (Brown, G., editor). Mineralogical Society, London.Google Scholar
Coudtá-Gaussen, G., Le Coustumer, M.-N. & Rognon, P. (1984) Paléosols d'age Pléistocáne supérieur dans les loess des Matmata (Sud Tunisien). Sci. Gdol. Bull. 37, 359386.Google Scholar
Dan, J. (1977) The distribution of nari and other limecrusts in Israel. Israel J. Earth Sci. 26, 68–83.Google Scholar
Danin, A. & Ganor, E. (1991) Trapping of airborne dust by mosses in the Negev Desert, Israel. Earth Surf Proc. Landforms 16, 153162.Google Scholar
El-Sherbini, M.I. & Issa, G.I. (1989) Composition and origin of some calcrete deposits in South Western Desert of Egypt. J. Afr. Earth Sci. 9, 461466.Google Scholar
Elgabaly, M.M. (1962) The presence of attapulgite in some soils of the western desert of Egypt. Soil Sci. 93, 387390.CrossRefGoogle Scholar
Elloy, R. & Thomas, G. (1981) Dynamique de la genáse des croQtes calcaires (calcretes) développdes sur sdries rouges pldistocbnes en Algdrie N. Occ. Contexte gdomorphologique et climatique. Pdtrographie et géochimie. Bull. Centre Rech. Explo.-Prod. Elf Aquitaine, 5, 53112.Google Scholar
Elprince, A.M., Mashhady, A.S. & Aba-Husayn, M.M. (1979) The occurrence of pedogenic palygorskite (attapulgite) in Saudi Arabia. Soil Sci. 128, 214218.Google Scholar
Eswaran, J. & Barzanji, A.F. (1974) Evidence for the neoformation of attapulgite in some soils of Iraq. Trans. 10th Int. Congr. Soil Sci. Moscow, 7, 154161.Google Scholar
Frye, J.C., Glass, H.D., Leonard, A.B. & Coleman, D.D. (1974) Caliche and clay mineral zonation of Ogallala Formation, central-eastern New Mexico. New Mexico Bureau o[ Mines and Mineral Resources, Circular 144, 16 pp.Google Scholar
Ganor, E. (1991) The composition of clay minerals transported to Israel as indicators of Saharan dust emission. Atmos. Env. 25A, 2657–2664.Google Scholar
Ganor, E., Foner, H.A., Brenner, S., Neeman, E. & Lavi, N. (1991) The chemical composition of aerosols settling in Israel following dust storms. Atmos. Env. 25A, 2665-2670.Google Scholar
Gardner, L.R. (1972) Origin of the Mormon Mesa Caliche, Clark County, Nevada. Geol. Soc. Amer. Bull. 83, 143156.Google Scholar
Gauthier-Lafaye, F., Taieb, R., Paquet, H., Chahi, A., Prudencio, I. & SEQUEIRA BRAGA M-A. (1993) Composition isotopique de l'oxyène de palygorskites associées á des calcretes: conditions de formation. C. R. Acad. Sci. Paris, 316, 12391245.Google Scholar
Gile, L.H., Hawley, J.W. & Grossman, R.B. (1981) Soils and geomorphology in the Basin and Range area of Southern New-Mexico, Guidebook to the Desert Project. New-Mexico Bur. Mines Mineral Res., Memoir 39, 222 pp.Google Scholar
Grim, R.E. (1968) Clay Mineralogy. McGraw-Hill, New York.Google Scholar
Hassouba, H. & Shaw, H.F. (1980) The occurrence of palygorskite in Quaternary sediments of the coastal plain of North-West Egypt. Clay Miner. 15, 7783.CrossRefGoogle Scholar
Hay, R.L. & Wiggins, B. (1980) Pellets, ooids, sepiolite and silica in three calcretes of South western United States. Sedimentology, 27, 559576.Google Scholar
Heystek, H. & Schmidt, E. (1953) The mineralogy of the attapulgite-montmorillonite deposit in the Springbok Flats, Transvaal. Trans. Geol. S. Afr. 56, 99115.Google Scholar
Hodge, T., Turchenek, L.W. & Oades, J.M. (1984) Occurrence of palygorskite in ground-water rendzinas (petrocalcic Calciaquolls) in Southeast South Australia. Pp. 199-210 in: Palygorskite-Sepiolite: Occurrences, Genesis and Uses (Singer, A. & Galzln, E., editors). Developments in Sedimentology, Elsevier, 37.Google Scholar
Holtzapffel, T. (1985) Les minéraux argileux, préparation, analyse diffractométrique et détermination. Soc. Géol. du Nord, Spec. Publ. 12, 136 pp.Google Scholar
Hutton, J.T. & Dixon, J.C. (1981) The chemistry and mineralogy of some South Australia calcretes and associated soft carbonates and their dolomitization. J. Geol. Soc. Aust. 28, 7179.Google Scholar
Isphording, W.C. (1973) Discussion of the occurrence and origin of sedimentary palygorskite-sepiolite deposits. Clays Clay Miner. 21, 391401.CrossRefGoogle Scholar
Jones, B.F. & Galan, E. (1988) Palygorskite - Sepiolite. Pp. 631–674 in: Hydrous Phyllosilicates (exclusive of micas) (Bailey, S.W., editor). Mineral. Soc. Amer., Reviews in Mineralogy, 19.Google Scholar
Lamouroux, M., Paquet, H. & Millot, G. (1973) Evolution des minGraux argileux dans les sols du Liban. Pédologie 23, 5371.Google Scholar
Lang, J. & Pias, J. (1971) Morphogénèse dunaire et pédogènése dans le bassin intramontagneux de Bamian (Afghanistan central). Rev. Géogr. Phys. et Géol. Dyn. 13, 359367.Google Scholar
Lee, S.Y., Dixon, J.B. & Aba-Husayn, M.M. (1983) Mineralogy of Saudi Arabian soils: Eastern region. Soil Sci. Soc. Am. J. 47, 321326.Google Scholar
Mackenzie, R.C., Wilson, M.J. & Mashhady, A.S. (1984) Origin of the palygorskite in some soils of the Arabian Peninsula. Pp. 177–186 in: Palygorskite- Sepiolite: Occurrences, Genesis and Uses (Singer, A. & Galán, E., editors). Developments in Sedimentology, Elsevier, 37.Google Scholar
Martin De Vilades, J.L., Jimenez Ballestra, R. & Guerra, A. (1987) Pedogenic significance of palygorskite in paleosoils developed on terraces of the river Tajo (Spain). Pp. 535–548 in: Geochemistry and Mineral Formation in the Earth Surface (Rodriguez Clemente, R. & Tardy, Y., editors). C.S.I.C., Madrid.Google Scholar
Mashhady, A.S., Reda, M., Wilson, M.J. & Mackenzie, R.C. (1980) Clay and silt mineralogy of some soils from Qasim, Saudi Arabia. J. Soil Sci. 31, 101115.CrossRefGoogle Scholar
Mcgrawth, D.B. & Hawley, J.W. (1987) Geomorphic evolution and soil-geomorphic relationships in the Socorro area, Central New Mexico. Pp, 55–67 in: Guidebook to the Socorro Area, New Mexico (McLemore, V.T. & Bowie, M.R., editors). New Mexico Bureau of Mines & Mineral Resources.Google Scholar
Mclean, S.A., Allen, B.L. & Craig, J.R. (1972) The occurrence of sepiolite and attapulgite on the southern High Plains. Clays Clay Miner. 20, 143149.Google Scholar
Millot, G., Paquet, H. & Ruellan, A. (1969) Néoformation d'attapulgite dans les sols à carapaces calcaires de la Basse Moulouya (Maroc oriental). Comptes Rendus Acad. Sci. Paris, 268, 27712775.Google Scholar
Millot, G., Radier, H. & Bonifas, M. (1957) La sédimentation argileuse à attapulgite et montmorillonite. Bull. Soc. Géol. France 6, 425433.Google Scholar
Millot, G., Nahon, D., Paquet, H., Ruellan, A. & Tardy, Y. (1977) L'épigénie calcaire des roches silicatées dans les encroutements carbonatés en pays sub-aride, Anti-Atlas, Maroc. Sci. Géol. Bull. 30, 129152.Google Scholar
Monger, H.C. & Daugherty, L.A. (1991) Neoformation of palygorskite in a southern New Mexico aridisol. Soil Sci. Soc. Am. J. 55, 16461650.Google Scholar
Montenat, C. (1977) Les bassins néogènes du Levant d'Alicante et de Murcie (Cordilléres Bétiques orientales, Espagne) - Straigraphie, paléogéographie et evolution dynamique. Documents Labo. Géol. Faculté des Sci., Lyon, 69, 345 pp.Google Scholar
Muir, A. (1951) Notes on soils of Syria. J. Soil Sci. 2, 163182.CrossRefGoogle Scholar
Nahon, D., Paquet, H., Ruellan, A. & Millot, G. (1975) Encroutements calcaires dans les alétrations des marnes éocènes de la falaise de Thiès (Sénégal): organisation morphologique et minéralogie. Sci. Géol. Bull. 28, 2946.Google Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp, 1 – 128 in: Chemistry qf Clays and Clay Minerals (Newman, A.C.D., editor), Mineral. Soc. London. Monograph 6.Google Scholar
Offer, Z.Y., Zangvil, A. & Azmon, E. (1993) Characterization of airborne dust in the Sede Boker area. Israel J. Earth Sci. 41, 239245.Google Scholar
Osmond, D.A. & Stephen, I. (1957) The micropedology of some red soils from Cyprus. J. Soil Sci. 8, 19–26.Google Scholar
Paquet, H. (1983) Stability, instability and significance of attapulgite in the calcretes of Mediterranean and tropical areas with marked dry seasons. Sciences Géologiques, Université Louis Pasteur de Strasbourg, 72, 131140.Google Scholar
Patil, D.N. & Surana, A.P. (1992) Origin of the calcrete deposits of Saswad-Nira area, Western Maharashtra, India. J. Geol. Soc. India, 39, 105117.Google Scholar
Pi-Pujol, M. D. & Buurman, P. (1987) Authigenic palygorskite and smectite in early Paleogene paleosols of the SE Ebro basin (Catalonia, NE Spain). Geol. Mijnbouw, 65, 287296.Google Scholar
Ravikovitch, S., Pines, F. & Ben-Yair, M. (1960) Composition of colloids in soils of Israel. J. Soil. Sci. 11, 8291.Google Scholar
Reeves, C.C. JR. (1976) Calciche. Estacado Books, Lubbock, Texas.Google Scholar
Regaya, K. (1984) Les accumulations calcaires darts les limons de Matmata de la région de Gabès en Tunisie. Sci. Géol. Bull. 37, 387398.Google Scholar
Rzcaya, K. (1992) Les croutes calcaires de Tunisie orientale aux environs de Sousse. Signification climatique et historique. Sci. GdoL Bull. 45, 99107.Google Scholar
Rodas, M., Luque, F.-J., Mas, R. & Garzon, M.G. (1994) Calcretes, palycretes and silcretes in the paleogene detrital sediments of the Duero and Tajo Basins, Central Spain. Clay Miner. 29, 273285.CrossRefGoogle Scholar
Rogers, L.E.R., Martin, A.E. & Norrish, K. (1954) The occurrence of palygorskite, near Ipswich, Queensland. Mineral. Mag. 30, 534–540.Google Scholar
Rogers, L.E.R., Quirk, J.P. & Norrish, K. (1956) Occurrence of an aluminium-sepiolite in a soil having unusual water relationships. J. Soil Sci. 7, 177185 CrossRefGoogle Scholar
Sancho, C., Melendez, A., Signes, M. & Bastida, J. (1992) Chemical and mineralogical characteristics of Pleistocene caliche deposits from the central Ebro Basin, NE Spain. Clay Miner. 27, 293308.Google Scholar
Shadfan, H. & Dixon, J.B. (1984) Occurrence of palygorskite in the soils and rocks of the Jordan Valley. Pp. 187-198 in: Palygorskite-Sepiolite: Occurrences, Genesis and Uses (Singer, A. & Galán, E., editors). Developments in Sedimentology, Elsevier, 37.Google Scholar
Shadfan, H. & Mashhady, A.S. (1985) Distribution of palygorskite in sediments and soils of Eastern Saudi Arabia. Soil Sci. Soc. Am. J. 49, 243250.Google Scholar
Shadfan, H., Dixon, J.B. & Kippenberger, L.A. (1985a) Palygorskite distribution in Tertiary limestone and associated soils of Northern Jordan. Soil Sci. 140, 206212.Google Scholar
Shadean, H., Hussen, A.A. & Auaily, F. (1985b) Occurrence of palygorskite in Tertiary sediments of western Egypt. Clay Miner. 20, 405413.Google Scholar
Singer, A. (1971) Clay minerals in the soils of the southern Golan Heights. Isr. J. Earth Sci. 20, 105112 Google Scholar
Singer, A. (1979) Palygorskite in sediments: detrital, diagenetic or neoformed–a critical review. Geol. Rundsch. 68, 9961008.Google Scholar
Singer, A. (1981) The texture of palygorskite from the Rift Valley, Southern Israel. Clay Miner. 16, 415419.Google Scholar
Singer, A. (1984) Pedogenic palygorskite in the arid environment. Pp. 169 – 176 in: Palygorskite- Sepiolite: Occurrences, Genesis and Uses (Singer, A. & Galán, E., editors). Developments in Sedimentology, Elsevier, 37.Google Scholar
Singer, A. (1988) Illite in aridic soils, desert dust and desert loess. Sedim. Geol. 59, 251259.Google Scholar
Singer, A. (1989) Palygorskite and sepiolite group minerals. Pp. 829-872 in: Minerals in Soil Environments (Dixon, J.B. & Weed, S.B., editors). Soil Sci. Soc. Amer. Book Series, Madison, 1.Google Scholar
Singer, A. & Norrish, K. (1974) Pedogenic palygorskite occurrences in Australia. Am. Miner. 59, 508–517.Google Scholar
Smith, B.J. & Whalley, W.B. (1982) Observations on the composition and mineralogy of an Algerian duricrust complex. Geoderma 28, 285311.CrossRefGoogle Scholar
Stephen, I. (1954) An occurrence of palygorskite in the Shetland Isles. Mineral. Mag. 30, 471480.Google Scholar
Strakhov, N.M. (1970) Principles of Lithogenesis. Plenum Publ. Corp. New York, Oliver & Boyd, Edinburg.Google Scholar
Vanoen Heuvel, R.C. (1966) The occurrence of sepiolite and attapulgite in the calcareous zone of a soil near Las Cruces, New Mexico. Clays Clay Miner. 13, 193207.Google Scholar
Velde, B. (1985) Clay mineral – A Physico-chemical Explanation of their Occurrence. Developments in Sedimentology, Elsevier 40.Google Scholar
Velde, B. (1992) Introduction to Clay Minerals. Chapman & Hall, London.Google Scholar
Verrecchia, E.P. (1990) New micromorphological interpretation of nari-calcrete (Israel). Pp. 677–682 in: Soil Micromorphology: a Basic and Applied Science (Douglas, L.A., editor). Elsevier, Amsterdam.Google Scholar
Verrecchia, E.P. (1992) Le role de la sédimentation, de l'activité biologique et de la diagénèse dans l'édification des nari-calcretes de Nazareth (Galilée, Israel). Mdm. Sci. de la Terre 92-17, Univ. P. et M. Curie, Paris.Google Scholar
Verrecchia, E.P. (1994) L'origine biologique et superficielle des croutes zonaires. BulL Soc. Géol. de France, 165, 583592.Google Scholar
Viani, B.E., Al-Mashhady, A.S. & Dixon, J.B. (1983) Mineralogy of Saudi Arabian soils: Central alluvial basins. Soil Sci. Soc. Am. J. 47, 149157.Google Scholar
Watts, N.L. (1980) Quaternary pedogenic calcretes from the Kalahari (Southern Africa): mineralogy, genesis and diagenesis. Sedimentology 27, 661–686.Google Scholar
Wieder, M., Yair, A. & Arzi, A. (1985) Catenary soil relationships on arid hillslopes. Catena Suppl. 6, 4157.Google Scholar
Weaver, C.E. & Beck, K.C. (1977) Miocene of The, S.E. United States: a model for chemical sedimentation in a peri-rnarine environment. Developments in Sedimentology, Elsevier 22, 1–234.Google Scholar
Yaalon, D.H. (1955) Clays and some non-carbonate minerals in limestones and associated soils of Israel. Bull. Res. Counc. lsr. 5B-2 Sect. Bio.-Geo., 161-173.Google Scholar
Yaalon, D.H. & Singer, S. (1974) Vertical variation in strength and porosity of calcrete (nari) on chalk, Shefela, Israel and interpretation of its origin. J. Sed. Pet. 44, 10161023.Google Scholar
Yaalon, D.H. & Dan, J. (1974) Accumulation and distribution of loess-derived deposits in the semidesert and desert fringe areas of Israel. Z. f Geomorph. Suppl. 20, 91105.Google Scholar
Yaalon, D.H. & Wieder, M. (1976) Pedogenic paly- gorskite in some arid brown (calciorthid) soils of Israel. Clay Miner. 11, 73–80.Google Scholar
Yair, A. & Shachak, M. (1987) Studies in watershed ecology of an arid area. Pp. 145-193 in: Progress in Desert Research (Berkofsky, L. & Wurtele, M.G., editors), Rowman & Littlefield Publ.Google Scholar
Yair, A., Karnieli, A. & Issar, A. (1991) The chemical composition of precipitation and runoff water on an arid limestone hillside, northern Negev, Israel. J. Hydrol. 129, 371388 .Google Scholar