Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T04:57:23.376Z Has data issue: false hasContentIssue false

A novel approach to the study of the development of the Chalk’s smectite assemblage

Published online by Cambridge University Press:  27 February 2018

X. F. Hu
Affiliation:
Editorial Office, Journal of Palaeogeography, China University of Petroleum (Beijing), 20 Xueyuan Road, P.O. Box 902, Beijing 100083, China
D. Long
Affiliation:
Willow View, 46 Litcham Road, Mileham, Norfolk, PE32 2PT, UK
C. V. Jeans*
Affiliation:
Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EQ, UK
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Detrital, volcanic and diagenetic origins have been used to explain the smectite clay assemblage that characterizes the Upper Cretaceous Chalk of Europe. To further the understanding of how clays of different origins may have converged to this characteristic clay mineral assemblage a new approach is put forward for their investigation. This is based upon (1) the correlation that exists between the trace element and stable isotope geochemistry of the calcite cements preserved within Chalk brachiopods and the various diagenetic phases of early lithification and cementation recognized in the Chalk, and (2) an understanding of the process of late diagenetic cementation that has caused regional differences in the hardness of the Chalk. It is suggested that each phase of lithification and associated calcite cementation may preserve the different clay assemblages at various stages in their convergence to the characteristic Chalk smectite assemblage.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2014 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

References

Bower, C.R. & Farmery, J.T. (1910) The zones of the Lower Chalk of Lincolnshire. Proceedings of the Geologists’ Association, 11, 333–359.Google Scholar
Brä utigam, F. (1962) Zur Stratigraphie und Paläontologie des Cenomans und Turons im Nordwestlichen Harzvorland. PhD thesis, Universität Braunschweig, Germnay.Google Scholar
Deconinck, J.F. & Chamley, H. (1995) Diversity of smectite origins in Late Cretaceous sediments: Examples of chalks from northern France. Clay Minerals, 30, 365–379.10.1180/claymin.1995.030.4.09Google Scholar
Deconinck, J.F., Amédro, F., Baudin, F., Godet, A., Pellenard, P., Robaszynski, F. & Zimmerlin, I. (2005) Late Cretaceous palaeoenvironments expressed by the clay mineralogy of Cenomanian- Campanian chalks from the east of the Paris Basin. Cretaceous Research, 26, 171–179.10.1016/j.cretres.2004.10.002Google Scholar
Dickson, J.A.D. & Barber, C. (1976) Petrography, chemistry and origin of early diagenetic concretions in the Lower Carboniferous of the Isle of Man. Sedimentology, 23, 189–211.10.1111/j.1365-3091.1976.tb00046.xGoogle Scholar
Dorn, P. & Bräutigam, F. (1959) Hinweise auf Oberkreidevulkanismus in NW-Deutschland. Abhandlungen der Braunschweigi s c hen Wissenschaftlichen Gesellschaft, 11, 1–4.Google Scholar
Duplaix, S., Dupuis, J., Camez, T., Lucas, J. & Millot, J. (1960) Sur la nature des minéraux argileux inclus dans les calcaires sénoniens de l’Angoumois. Bulletin du Service de la carte géologique d’Alsace et de Lorraine, 13, 157–162.Google Scholar
Hardman, R.F.P. (1982) Chalk reservoirs of the North Sea. Bulletin of the Geological Society of Denmark, 30, 119–137.CrossRefGoogle Scholar
Heim, D. (1957) Uber die mineralischen, nicht-karbonitische Bestandteik des Cenoman und Turon der mitteldeutschen kreibemulden und ihre Verteailung. Heidelberger Beitrage zur Mineralogie und Petrographie, 5, 302–330.Google Scholar
Hendry, J.P., Pearson, M.J., Trewin, N.H. & Fallick, A.E. (2006) Jurassic septarian concretions from N. Scotland record interdependent bacterial, physical and chemical processes of marine mudrock diagenesis. Sedimentology, 53, 537–565.10.1111/j.1365-3091.2006.00779.xGoogle Scholar
Hu, X.F., Jeans, C.V. & Dickson, J.A.D. (2012) Geochemical and stable isotope patterns of calcite cementation in the Upper Cretaceous Chalk, UK: Direct evidence from calcite-filled vugs in brachiopods. Acta Geologica Polonica, 62, 143–172.10.2478/v10263-012-0007-xGoogle Scholar
Jeans, C.V. (1973) The Market Weighton Structure; tectonics, sedimentation & diagenesis during the Cretaceous. Proceedings of the Yorkshire Geological Society, 39, 409–444.10.1144/pygs.39.3.409Google Scholar
Jeans, C.V. (1978) Silicifications and associated clay assemblages in the Cretaceous marine sediments of southern England. Clay Minerals, 13, 101–126.10.1180/claymin.1978.013.1.09CrossRefGoogle Scholar
Jeans, C.V. (1980) Early submarine lithification in the Red Chalk and Lower Chalk of eastern England: a bacterial control model and its implications. Proceedings of the Yorkshire Geological Society, 43, 81–157.10.1144/pygs.43.2.81Google Scholar
Jeans, C.V. (2006) Clay mineralogy of the British Cretaceous. Clay Minerals, 41, 47–150.Google Scholar
Jeans, C.V., Merriman, R.J. & Mitchell, J.G. (1977) Origin of the Middle Jurassic and Lower Cretaceous Fuller’s earths in England. Clay Minerals, 12, 11–44.10.1180/claymin.1977.012.1.02CrossRefGoogle Scholar
Jeans, C.V., Long, D., Hall, M.A., Bland, D.J. & Cornford, C. (1991) The geochemistry of the Plenus Marls at Dover, England: evidence of fluctuating oceanographic conditions and of glacial control during the development of the Cenomanian-Turonian d13C anomaly. Geological Magazine, 128, 604–632.10.1017/S0016756800019725CrossRefGoogle Scholar
Jeans, C.V., Fallick, A.E., Fisher, M.J., Merriman, R.J., Corfield, R.M. & Manighetti, B. (1997) Clay- and zeolite-bearing Triassic sediments at Kaka Point: evidence of microbially influenced mineral formation from earliest diagenesis into the lower grades of metamorphism. Clay Minerals, 32, 373–423.10.1180/claymin.1997.032.3.04Google Scholar
Jeans, C.V., Hu, X.F. & Mortimore, R.N. (2012) Calcite cements and the stratigraphical significance of the marine d13C carbonate reference curve for the Upper Cretaceous Chalk of England. Acta Geologica Polonica, 62, 173–196.10.2478/v10263-012-0008-9Google Scholar
Jeans, C.V., Tosca, N.J., Boreham, S. & Hu, X.F. (2014) Clay mineral-grain size-calcite cement relationships in Upper Cretaceous Chalk, UK: a preliminary investigation. Clay Minerals, 49, 299–325.10.1180/claymin.2014.049.2.09Google Scholar
Lindgreen, H., Drits, V.A., Sakharov, B.A., Jakobsen, H.J., Salyn, A.L., Dainyat, L.G. & Krøyer, H. (2002) The structure and diagenetic transformation of illitesmectite and chlorite-smectite from North Sea Cretaceous–Tertiary chalk. Clay Minerals, 37, 429–450.10.1180/0009855023730055Google Scholar
Lindgreen, H., Drits, V.A., Jakobsen, F. & Sakharov, B.A. (2008) Clay mineralogy of the central North Sea Upper Cretaceous-Tertiary chalk and the formation of clay-rich layers. Clay and Clay Minerals, 56, 693–710.10.1346/CCMN.2008.0560610Google Scholar
Maliva, R.G. & Dickson, J.A.D. (1997) Ulster White Limestone Formation (Upper Cretaceous) of Northern Ireland: effects of basalt loading on chalk diagenesis. Sedimentology, 44, 105–112.10.1111/j.1365-3091.1997.tb00426.xGoogle Scholar
Millot, G. (1949) Relations entre la constitution et la gene`se des roches sédimentaires argileuses. The`se Science Nancy, Géologie Appliquée et Prospection Minie`re, 2, 352 pp.Google Scholar
Millot, G. (1964) Géologie des Argiles, Masson et Cie, Paris, 500 pp.Google Scholar
Millot, G., Camez, T. & Bonte, A. (1957) Sur la montmorillonite dans les craies. Bulletin du Service de la carte géologique d’Alsace et de Lorraine. 10, 25–26.Google Scholar
Mitchell, S.F. (1995) Lithostratigraphy and biostratigraphy of the Hunstanton Formation (Red Chalk, Cretaceous) succession at Speeton, North Yorkshire, England. Proceedings of the Yorkshire Geological Society, 50, 285–303.10.1144/pygs.50.4.285Google Scholar
Mitchell, S.F. (1996) Foraminiferal assemblages from the late Lower and Middle Cenomanian of Speeton (North Yorkshire, UK): relationships with sea-level fluctuations and watermass distribution. Journal of Micropalaeontology, 15, 37–54.10.1144/jm.15.1.37CrossRefGoogle Scholar
Mortimore, R.N. (1986) Stratigraphy of the Upper Cretaceous White Chalk of Sussex. Proceedings of the Geologists’ Association, 97, 97–139.10.1016/S0016-7878(86)80065-7Google Scholar
Mortimore, R.N. (2012) Making sense of Chalk: a total rock approach to its engineering geology. Quarterly Journal of Engineering Geology and Hydrology, 45, 252–334.10.1144/1470-9236/11-052Google Scholar
Raiswell, R. (1971) The growth of Cambrian and Liassic concretions. Sedimentology, 17, 147–171.10.1111/j.1365-3091.1971.tb01773.xCrossRefGoogle Scholar
Raiswell, R. (1976) The microbiological formation of carbonate concretions in the Upper Lias of N. England. Chemical Geology, 18, 227–244.10.1016/0009-2541(76)90006-1Google Scholar
Schöner, H. (1960) Über die Verteilung und Neubildung der nichtkarbonatischen Mineralkomponenten der Oberkreide aus der Umgebung von Hannover. Beiträge zur Mineralogie und Petrographie, 7, 76–103.Google Scholar
Valeton, I. (1959) Eine vulkanische Tuffiage aus der Oberkreide von Hemmoor/Niederelbe. Neues Jahrbuch für Geologie und Palaöntologie, 193–204.Google Scholar
Valeton, I. (1960) Vulkanische tuffiteinlagerung in der nordwestdeutschen Oberkreide. Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg, 29, 26–41.Google Scholar
Weir, A.H. & Catt, J.A. (1965) The mineralogy of some Upper Chalk samples from the Arundel area, Sussex. Clay Minerals, 6, 97–110.10.1180/claymin.1965.006.2.04Google Scholar
Wood, C.J. & Smith, E.G. (1978) Lithostratigraphical classification of the Chalk in North Yorkshire, Humberside and Lincolnshire. Proceedings of the Yorkshire Geological Society, 42, 263–287.10.1144/pygs.42.2.263Google Scholar
Wray, D.S. (1995) Origin of clay-rich beds in Turonian chalks from Lower Saxony, Germany- a rare earth element study. Chemical Geology, 119, 161–173.10.1016/0009-2541(94)00089-QCrossRefGoogle Scholar
Wray, D.S. (1999) Identification and long-range correlation of bentonites in Turonian-Coniacian (Upper Cretaceous) chalks of northwest Europe. Geological Magazine, 136, 361–371.10.1017/S0016756899002836CrossRefGoogle Scholar
Wray, D.S. & Wood, C.J. (1995) Geochemical identification and correlation of tuff layers in Lower Saxony, Germany. Berliner Geowissenschaftliche Abhandlungen, E16.1, 215–226.Google Scholar
Wray, D.S. & Wood, C.J. (1998) Distinction between detrital and volcanogenic clay-rich beds in Turonian- Coniacian chalks of eastern England. Proceedings of the Yorkshire Geological Society, 52, 95–105.10.1144/pygs.52.1.95Google Scholar
Wray, D.S., Kaplan, U. & Wood, C.J. (1995) Tuff- Vorkommen und ihre bio- und eventstratigraphie im Turon des Teutoburger Waldes, der Egge und des Haarstrangs. Geologie und Paläontologie in Westfalen, 37, 1–53.Google Scholar
Wray, D.S., Wood, C.J., Ernst, G. & Kaplan, U. (1996) Geochemical subdivision and correlation of clay-rich beds in Turonian sediments of northern Germany. Terra Nova, 8, 603–610.10.1111/j.1365-3121.1996.tb00790.xCrossRefGoogle Scholar