Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-12-01T06:25:38.940Z Has data issue: false hasContentIssue false

Nomenclature for regular interstratifications

Published online by Cambridge University Press:  09 July 2018

S. W. Bailey*
Affiliation:
Department of Geology & Geophysics, University of Wisconsin, Madison, Wis. 53706, USA

Extract

It is now generally accepted that species names can be given to regularly interstratified clay minerals, in accordance with the recommendation of the AIPEA Nomenclature Committee (Brindley & Pedro, 1970). In Part A of this report we suggest (i) criteria for defining the degree of regularity of alternation of different layer types that should merit a name, (ii) data that should be provided for documentation of a regular interstratification, and (iii) some examples of interstratifications that do not merit names. In Part B of the report we apply the suggested criteria to the analysis of regular interstratifications previously reported in the literature, and make recommendation regarding the usage of existing names.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, K., Schreyer, W., Medenbach, O. & Gebert, W. (1980) Kulkeit, ein geordnetes 1:1 Mixed-Layer-Mineral zwischen Klinochlor und Talk (abstr.). Fort. Mineral. 58, 45.Google Scholar
Alietti, A. & Mejsner, J. (1980) Structure of a talc/saponite mixed-layer mineral. Clays Clay Miner. 28, 388390.Google Scholar
Bradley, W.F. (1950) The alternating layer sequence of rectorite. Am. Miner. 35, 590595.Google Scholar
Brindley, G.W. (1956) Allevardite, a swelling double-layer mica mineral. Am. Miner. 41, 91103.Google Scholar
Brindley, G.W. & Pedro, G. (1970) Report of the AIPEA Nomenclature Committee. AIPEA Newsletter 4, 34.Google Scholar
Brown, G., Bourguignon, P. & Thorez, J. (1974) A lithium-bearing aluminian regular mixed layer montomorillonite-chlorite from Huy, Belgium. Clay Miner. 10, 135144.Google Scholar
Brown, G. & Weir, A.H. (1963) The identity of rectorite and allevardite. Proc. Int. Clay Conf., Stockholm 1, 2735 and 2, 87–90.Google Scholar
Gaillère, S., Mathieu-Sicaud, A. & Hénin, S. (1950) Nouvel essai d'identification du minéral de la Table près Allevard, l'allevardite. Bull. Soc. Fr. Min. Crist. 73, 193201.Google Scholar
Frank-Kamenetskii, V.A., Logvinenko, N.V. & Drits, V.A. (1965) Tosudite—a new mineral, forming the mixed-layer phase in alushtite. Proc. Int. Clay Conf., Stockholm 2, 181186.Google Scholar
Gradusov, B.P. (1969) An ordered trioctahedral mixed-layer form with chlorite and vermiculite packets. Doklady Akad. Nauk, SSSR 186, 140142 (Engl, transl.).Google Scholar
Guenot, B. (1970) Etude d'un minéral argileux du type interstratifìé talc-saponite trouvé dans le Précambrien du Congo Kinshasa. Bull. Groupe Fr. Argiles 22, 97104.Google Scholar
Johnson, L.J. (1964) Occurrence of regularly interstratified chlorite-vermiculite as a weathering product of chlorite in a soil. Am. Miner. 49, 556572.Google Scholar
Kodama, H. (1966) The nature of the component layers of rectorite. Am. Miner. 51, 10351055.Google Scholar
Lazarenko, E.K. & Korolev, Yu. M. (1970) Tarasovite, a new dioctahedral ordered interlayered mineral. Zapiski Vses. Mineralog. Obshch. 99, 214224.Google Scholar
Lippmann, F. (1954) Über einen Keuperton von Zaiserweiher bei Maulbronn. Heidelb. Beiträge Mineral. Petrogr. 4, 130134.Google Scholar
Lippmann, F. (1956) Clay minerals from the Röt Member of the Triassic near Göttingen, Germany. J. Sed. Petrol. 26, 125139.Google Scholar
Lippmann, F. (1960) Corrensit. In: Handbuch der Mineralogie by C. Hintze, Ergänzungsband II, Neue Mineralien und Neue Mineralnamen by K. F. Chudoba, Teil III, 688691.Google Scholar
MacEwan, D.M.C. & Wilson, M.J. (1980) Interlayer and intercalation complexes of clay minerals. Pp. 197248 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G. W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Matsuda, T., Nagasawa, K., Tsuzuki, Y. & Henmi, K. (1981) Regularly interstratified dioctahedral mica-smectite from Roseki deposits in Japan. Clay Miner. 16, 91102.Google Scholar
Nishiyama, T., Shimoda, S., Shimosaka, K. & Kanaoka, S. (1975) Lithium-bearing tosudite. Clays Clay Miner. 23, 337342.Google Scholar
Pevear, D.R., Williams, V.E. & Mustoe, G.E. (1980) Kaolinite, smectite, and K-rectorite in bentonites: relation to coal rank at Tulameen, British Columbia. Clays Clay Miner. 28, 241254.Google Scholar
Schlenker, B. (1971) Petrographische Untersuchungen am Gipskeuper und Lettenkeuper von Stuttgart. Oberrhein. geol. Abh. 20, 69102.Google Scholar
Veniale, F. & Van Der Marel, H.W. (1968) A regular talc-saponite mixed-layer mineral from Ferriere, Nure Valley (Piacenza Province, Italy). Contrib. Mineral. Petrol. 17, 237254.Google Scholar
Veniale, F. & Van Der Marel, H.W. (1969) Identification of some 1:1 regular interstratified trioctahedral clay minerals. Proc. Int. Clay Conf, Tokyo 1, 233244.Google Scholar