Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T19:41:21.251Z Has data issue: false hasContentIssue false

Ni-sepiolite-falcondoite in garnierite mineralization from the Falcondo Ni-laterite deposit, Dominican Republic

Published online by Cambridge University Press:  09 July 2018

E. Tauler*
Affiliation:
Departament de Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, C/ Martí i Franquès s/n, E–08028 Barcelona, Spain
J. A. Proenza
Affiliation:
Departament de Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, C/ Martí i Franquès s/n, E–08028 Barcelona, Spain
S. Galí
Affiliation:
Departament de Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, C/ Martí i Franquès s/n, E–08028 Barcelona, Spain
J. F. Lewis
Affiliation:
Department of Earth and Environmental Sciences, The George Washington University, Washington, D.C. 20052, USA
M. Labrador
Affiliation:
Departament de Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, C/ Martí i Franquès s/n, E–08028 Barcelona, Spain
E. García-Romero
Affiliation:
Departamento de Cristalografía y Mineralogía, Universidad Complutense de Madrid, E-28040, Madrid, Spain
M. Suarez
Affiliation:
Departamento de Geología, Universidad de Salamanca, E-37008, Salamanca, Spain
F. Longo
Affiliation:
Falcondo XStrata Nickel, Box 1343, Santo Domingo, Dominican Republic
G. Bloise
Affiliation:
Falcondo XStrata Nickel, Box 1343, Santo Domingo, Dominican Republic
*

Abstract

New chemical and structural data on sepiolite-falcondoite in garnierite veins from the Falcondo Ni-laterite deposits, central Dominican Republic, are reported. Samples of Ni-sepiolite-falcondoite vary in colour from whitish green to green depending on the NiO content (wt.%) and the amount of silica present. The texture is normally schistose and friable but samples with considerable quartz and/or amorphous silica are compact and hard. Back-scattered electron images indicate that the samples are composed of at least three generations of Ni-sepiolite-falcondoite. The extreme refined cell parameters for Ni-sepiolite-falcondoite vary from 13.400(2), 27.006(4), 5.273(1) Å to 13.340(3), 27.001(6), 5.267(1) Å (space group Pncn). As the Ni content increases there is a small reduction in the a parameter. Chemical compositions determined by electron probe microanalysis cover a large interval of the Ni-sepiolite-falcondoite solid solution (Fal3 and Fal77). Individual samples show a considerable range in composition with the widest range determined in one sample from 4.63 to 22.40 wt.% NiO.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1980) Structure of layer silicates. Pp. 1123 in: Crystal Structures of Clay Minerals and their X-ray identification (Brindley, G.W. & Brown, G., editors). Monograph, 5. Mineralogical Society, London.Google Scholar
Balci, S. (1996) Thermal decomposition of sepiolite and variations in pore structure with and without acid pre-treatment. Journal of Chemical Technology and Biotechnology, 66, 7278.Google Scholar
Brand, N.W., Butt, C.R.M. & Elias, M. (1998) Nickel laterites: classification and features. Journal of Australian Geology and Geophysics, 17, 8188.Google Scholar
Brauner, K & Preisinger, A. (1956) Struktur und Enstehung des Sepioliths. Tschermaks Mineralogische und Petrographische Mitteilungen, 6, 120140.Google Scholar
Brindley, G.W. (1978) The structure and chemistry of hydrous nickel-containing silicate and aluminate minerals. Bulletin du B.R.G.M. Section II, 3, 233245.Google Scholar
Brindley, G.W. & Kao, C.C. (1984) Structural and IR relations among Brucite-like divalent metal hydroxides. Physics and Chemistry of Minerals, 10, 187191.CrossRefGoogle Scholar
Brindley, G.W., Bish, D.L. & Hsien-Ming, W. (1977) The nature of kerolite, its relation to talc and stevensite. Mineralogical Magazine, 41, 443452.Google Scholar
Brindley, G.W., Bish, D.L. & Wan, H.M. (1979) Compositions, structures, and properties of nickel-containing minerals in the kerolite-pimelite series. American Mineralogist, 64, 615625.Google Scholar
Burns, R.G. (1970) Mineralogical Applications of Crystal Field Theory. Cambridge University Press, Cambridge, U.K. p. 551.Google Scholar
Caillere, S. (1936) Nickeliferous sepiolite . Bulletin Societe Francaise de Mineralogie, 59, 163326.Google Scholar
Caillere, S. & Hénin, S. (1961) Sepiolite. Pp. 325342 in. X-ray Identification and Crystal Structures of Clay Minerals, 2 nd edition (Brown, G., editor) Mineralogical Society, London.Google Scholar
Caillere, S. & Hénin, S. (1963) Mineralogie des argiles. Masson & Cie, Paris, France. 355 pp.Google Scholar
Chukanova, V.N., Pekov, I.V., Chukanov, N.V. & Zadov, A.E. (2002) Iron-rich analogue of sepiolite and the conditions of its formation in the contact aureole of the Lovozero alkaline massif. Geochemistry International, 40, 12251229.Google Scholar
Cluzel, D. & Vigier, B. (2008) Syntectonic mobility of supergene nickel ores from New Caledonia (Southwest Pacific). Evidence from faulted regolith and garnierite veins. Resource Geology, 58, 161170.Google Scholar
Elias, M. (2002) Nickel laterite deposits—a geological overview, resources and exploitation. Hobart, University of Tasmania, Centre for Ore Deposit Research Special Publication, 4, 205220.Google Scholar
Foster, L. & Eggleton, R.A. (2002) The Marlborough nickel laterite deposits. Pp. 3336 in: Regolith and Landscape in Eastern Australia (Roach, I.C., editor). University of Canberra, Australia.Google Scholar
Freyssinet, Ph., Butt, C.R.M. & Morris, R.C. (2005) Oreforming processes related to lateritic weathering. Economic Geology, 100th Anniversary Volume, 681-722.Google Scholar
Frost, R.L. & Ding, Z. (2003) Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites. Thermochimica Ada, 397. 119128.Google Scholar
Gleeson, S.A., Butt, C.R. & Elias, M. (2003) Nickel laterites: a review. SEG Newsletter, 54, 1118.Google Scholar
Gleeson, S.A., Herrington, R.J., Durango, J. & Velázquez, C.A. (2004) The mineralogy and geochemistry of the Cerro Matoso S.A. Ni-laterite deposit, Montelibano, Colombia. Economic Geology, 99, 11971213.Google Scholar
Golightly, J.P. (1981) Nickeliferous laterite deposits. Economic Geology, 75th Anniversary Volume, 459-462.Google Scholar
Greaves, C. & Thomas, M.A. (1986) Refinement of the structure of deuterated nickel hydroxide, Ni(OD)2, by powder neutron diffraction and evidence for structural disorder in samples with high surface area. Ada Crystallographica, B42, 5155.Google Scholar
Haldemann, E.G., Buchan, R., Blowes, V.H. & Chandler, T. (1979) Geology of the laterite nickel deposits, Dominican Republic. Pp. 5784 in: International Laterite Symposium, New Orleans (Evans, D.J., Shoemaker, R.S. & Velman, H., editors). Society of Mining Engineers.Google Scholar
Hotz, P.E. (1964) Nickeliferous laterites in southwestern Oregon and northwestern California. Economic Geology, 64, 355396.Google Scholar
Jones, B.F. & Galán, E. (1988) Palygorskite-sepiolite. Pp. 631673 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of Amererica.Google Scholar
Kadir, S., Bas, H. & Karakas, Z. (2002) Origin of sepiolite and loughlinite in a Neogene volcano-sedimentary lacustrine environment, Mihaliççk-Eskisehir, Turkey. The Canadian Mineralogist, 40, 10911102.Google Scholar
Karakaya, N., Çelik Karakaya, M., Temel, A., Küpeli, S. & Tunoglu, C. (2004) Mineralogical and chemical characterization of sepiolite occurrences at Karapinar (Konia Basin, Turquey). Clays and Clay Minerals, 52, 495509.Google Scholar
Lacroix, A. (1893-1895) Minéralogie de la France etde ses Colonies, I. Librairie Polytechnique Paris, France, p. 436.Google Scholar
Lewis, J.F., Draper, G., Proenza, J.A., Espaillat, J. & Jimenez, J. (2006) Ophiolite-related ultramafic rocks (serpentinites) in the Caribbean region: a review of their occurrence, composition, origin, emplacement and Ni-laterite soils formation. Geologica Ada, 4, 237263.Google Scholar
Lithgow, E.W. (1993) Nickel laterites of central Dominican Republic Part I. Mineralogy and ore dressing. Pp. 403425 in: The Paul E. Queneau International Symposium Extractive Metallurgy of Copper, Nickel and Cobalt, Volume I: Fundamental Aspects (Reddy, R.G. and Weizenbach, R.N. editors). The Minerals, Metals & Materials Society, Warrendale, Pennsylvania, USA.Google Scholar
Lorimer, G.W. & Cliff, G. (1976) Analytical electron microscopy of minerals. Pp. 506519 in: Electron Microscopy in Mineralogy (Wenk, H.R., editor). Springer-Verlag. Berlin.Google Scholar
Manceau, A. (1990) Distribution of cations among the octahedral of phyllosicates: insight from EXAFS. The Canadian Mineralogist, 28, 321328.Google Scholar
Manceau, A. & Calas, G. (1985) Heterogeneous distribution of nickel in hydrous silicates from New Caledonia ore deposits. American Mineralogist, 70, 549558.Google Scholar
Manceau, A. & Calas, G. (1986) Nickel-bearing clay minerals: II. X-ray absorption study of Ni-Mg distribution. Clay Minerals, 21, 341360.Google Scholar
Manceau, A., Calas, G. & Decarreau, A. (1985) Nickel-bearing clay minerals: I. Optical spectroscopic study of nickel crystal chemistry. Clay Minerals, 20, 367387.Google Scholar
Nagata, H., Shimoda, S. & Sudo, T. (1974) On the dehydration of bound water of sepiolite. Clays and Clay Minerals, 22, 285293.Google Scholar
Nickel, E.H. (1992) Solid solutions in mineral nomenclature. Mineralogical Magazine, 56, 127130.Google Scholar
Post, J.E., Bish, D.L. & Heaney, P.J. (2007) Synchrotron powder X-ray diffraction study of the structure and dehydration behaviour of sepiolite. American Mineralogist, 12, 9197.Google Scholar
Proenza, J.A., Zaccarini, F., Lewis, J., Longo, F. & Garuti, G. (2007) Chromite composition and platinum-group mineral assemblage of PGE-rich Loma Peguera chromitites, Loma Caribe peridotite, Dominican Republic. The Canadian Mineralogist, 45, 211228.Google Scholar
Proenza, J.A., Lewis, J.F., Galí, S., Tauler, E., Labrador, M., Melgarejo, J.C., Longo, F. & Bloise, G. (2008) Garnierite mineralization from Falcondo Ni-laterite deposit (Dominican Republic). Macla, 9, 197198.Google Scholar
Reddy, B.J., Frost, R.L. & Dickfos, M.J. (2009) Characterisation of Ni silicate-bearing minerals by UV-vis-NIR spectroscopy. Effect of Ni substitution in hydrous Ni-Mg silicates. Spectrochimica Ada, A71, 17621768 Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Ada Crystallographica, A32, 751767.Google Scholar
Som, S.K. & Joshi, R. (2002) Chemical weathering of serpentinite and Ni enrichment in Fe oxide at Sukinda area, Jajpur district, Orissa, India. Economic Geology, 97, 165172.Google Scholar
Springer, G. (1974) Compositional and structural variations in garnierites. The Canadian Mineralogist, 12, 381388.Google Scholar
Springer, G. (1976) Falcondoite, nickel analogue of sepiolite. The Canadian Mineralogist, 14, 407409.Google Scholar
Thorez, J. (1975) Phyllosilicates and clay minerals. A laboratory handbook for their X-ray diffraction analysis. Lelotte (Dison), France, 580 pp.Google Scholar
TOP AS, General Profile and Structure Analysis Sofware for Powder Diffraction Data, V2.1, Bruker AXS Gmbh, Karlsruhe, Germany.Google Scholar
Trescases, J.J. (1975) L'evolution geochimique supergene des roches ultrabasiques en zone tropicale: Formation des gisements nickeliferes de Nouvelle-Caledonie. Memoires O.R.S.TO.M, Paris, 78, 259.Google Scholar
Wells, M.A., Ramanaidou, E.R., Verrall, M. & Tessarolo, C. (2009) Mineralogy and crystal chemistry of ‘garnierites’ in the Goro lateritic nickel deposits, New Caledonia. European Journal of Mineralogy, 21, 467483.Google Scholar
Yalçin, H. & Bozkaya, Ö. (1995) Sepiolite-palygorskite from the Hekimhan region (Turkey). Clays and Clay Minerals, 43, 705717.Google Scholar