Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T19:19:16.354Z Has data issue: false hasContentIssue false

Natural nanoclays: applications and future trends – a Chilean perspective

Published online by Cambridge University Press:  09 July 2018

M. Calabi Floody
Affiliation:
Programa de Doctorado en Ciencias de Recursos Naturales Universidad de La Frontera, Temuco, Chile
B. K. G. Theng
Affiliation:
Landcare Research, Private Bag 11052, Palmerston North 4442, New Zealand
P. Reyes
Affiliation:
Departamento de Físico Química, Universidad de Concepción, Concepción, Chile
M. L. Mora*
Affiliation:
Departamento de Ciencias Química, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
*

Abstract

Because of their large potential for agricultural, industrial and medicinal applications, nanomaterials have been the focus of much research during the past few decades. Nanoclays are natural nanomaterials that occur in the clay fraction of soil, among which montmorillonite and allophane are the most important species. Montmorillonite is a crystalline hydrous phyllosilicate (layer silicate). Organically-modified montmorillonites or ‘organoclays’, formed by intercalation of quaternary ammonium cations, have long been used as rheological modifiers and additives in paints, inks, greases and cosmetics and as carriers and delivery systems for the controlled release of drugs. Perhaps the largest single usage of organoclays over recent years has been in the manufacture of polymer-clay nanocomposites. These organic–inorganic hybrid materials show superior mechanical, thermal and gas-barrier properties. Organoclays are also useful in pollution control and water treatment. Allophane is a non-crystalline aluminosilicate derived from the weathering of volcanic ash. A large proportion of the agricultural land in Chile is covered by volcanic soils,the clay fraction of which is dominated by allophane. Consisting of nanosize (3.5–5.0 nm) hollow spherules, allophane is a suitable support material for enzyme immobilization. Allophane is also effective at adsorbing phenolic compounds and colour from kraft mill effluents and phosphate from water and wastewater.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon. (2005) Barrier to success. Brand, 4, 4248.Google Scholar
Arai, Y., Sparks, D.L. & Davis, J.A. (2005) Arsenate adsorption mechanisms at the allophane-water interface. Environmental Science & Technology, 39, 25372544.Google Scholar
Bagshaw, S.A. (1999) Morphosynthesis of macrocellular mesoporous silicate foams. Chemical Communications, part 9, 767-768.Google Scholar
Bagshaw, S.A., Prouzet, E. & Pinnavaia, T.J. (1995) Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science, 269, 12421244.CrossRefGoogle ScholarPubMed
Bai, Y.X., Li, Y.F., Yang, Y. & Yi, L.X. (2006) Covalent immobilization of triacylglycerol lipase onto functionalized nanoscale SiO2 spheres. Process Biochemistry, 41, 770777.Google Scholar
Beall, G.W. (2003) The use of organo-clays in water treatment. Applied Clay Science, 24: 1120.CrossRefGoogle Scholar
Besoain, E. & Sepúlveda, G. (1985) Minerales secundarios. Pp. 153214 in: Suelos volcánicos de Chile (Tosso, J., editor). INIA, Santiago, Chile.Google Scholar
Biondi, E., Branciamore, S., Fusi, L., Gago, S. & Gallori, E. (2007) Catalytic activity of hammerhead ribozymes in a clay mineral environment: Implications for the RNA world. Gene, 389, 1018.Google Scholar
Boissiere, C., Van der Lee, A., El Mansouri, A., Larbot, A. & Prouzet, E. (1999) A double step synthesis of mesoporous micrometric spherical MSU-X silica particles. Chemical Communications, 2047-2048.Google Scholar
Borie, F. & Rubio, R. (2003) Total and organic phosphorus in Chilean volcanic soils. Gayana Botanica (Chile), 60, 6978.Google Scholar
Brady, N.C. & Weil, R.R. (2002) The Nature and Properties of Soils, Thirteenth Edition. Prentice Hall, New Jersey, 960 pp.Google Scholar
Brigatti, M.F., Galań, E. & Theng, B.K.G. (2006) Structures and mineralogy of clay minerals. Pp 1986 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam.Google Scholar
Brody, A.L. (2003) ‘Nano, nano’ food packaging technology. Food Technology, 57, 5254.Google Scholar
Browne, G.H. & Soong, R. (1997) An occurrence of allophane from Mangaturuturu River, Tongariro National Park, North Island, New Zealand. New Zealand Journal of Geology and Geophysics, 40, 253256.Google Scholar
Burgentzlé, D., Duchet, J., Gérard, J.F., Jupin, A. & Fillon, B. (2004) Solvent-based nanocomposite coatings I. Dispersion of organophilic montmorillonite in organic solvents. Journal of Colloid and Interface Science, 278, 2639.Google Scholar
Carretero, M.I., Gomes, C.S.F. & Tateo, F. (2006) Clays and human health. Pp. 717741 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam.CrossRefGoogle Scholar
Causserand, C., Kara, Y. & Aimar, P. (2001) Protein fractionation using selective adsorption on clay surface before filtration. Journal of Membrane Science, 186, 165181.CrossRefGoogle Scholar
Chabba, S. & Netravali, A.N. (2004) ‘Green’ composites using modified soy protein concentrate resin and flax fabrics and yarns. JSME International Journal Series A, 47, 556560.Google Scholar
Chabba, S. & Netravali, A.N. (2005a) ‘Green’ composites Part 1: characterization of flax fabric and glutaraldehyde modified soy protein concentrate composites. Journal of Materials Science, 40, 62636273.CrossRefGoogle Scholar
Chabba, S. & Netravali, A.N. (2005b) ‘Green’ composites Part 2: characterization of flax yarn and glutaraldehyde/ poly(vinyl alcohol) modified soy protein concentrate composites. Journal of Materials Science, 40, 62756282.Google Scholar
Chan, C.M., Wu, J.S., Li, J.X. & Cheung, Y.K. (2002) Polypropylene/calcium carbonate nanocomposites. Polymer, 43, 29812992.Google Scholar
Churchman, G.J., Gates, W.P., Theng, B.K.G. & Yuan, G. (2006) Clays and clay minerals for pollution control. Pp. 625675 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam.Google Scholar
Cotterell, B., Chia, J.Y.H. & Hbaieb, K. (2007) Fracture mechanisms and fracture toughness in semicrystal-line polymer nanocomposites. Engineering Fracture Mechanics, 74, 10541078.CrossRefGoogle Scholar
da Silva, Crespo J, Queiroz, N., da Graca, Nascimento M & Soldi, V. (2005) The use of lipases immobilized on poly(ethylene oxide) for the preparation of alkyl esters. Process Biochemistry, 40, 401409.Google Scholar
Dean, K., Yu, L. & Wu, D.Y. (2007) Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites. Composites Science and Technology, 67, 413421.CrossRefGoogle Scholar
Deshmane, C., Yuana, Q., Perkins, R.S. & Misra, R.D.K. (2007) On striking variation in impact toughness of polyethylene-clay and polypropylene-clay nanocomposite systems: The effect of clay-polymer interaction. Materials Science and Engineering A, 458, 150157.Google Scholar
Diez, M.C., Mora, M.L. & Videla, S. (1999) Adsoption of phenolic compounds and color from bleached Kraft mill effluent using allophanic compounds. Water Research, 33, 125130.CrossRefGoogle Scholar
Diez, M.C., Quiroz, A., Ureta-Zañartu, S., Vidal, G., Mora, M.L., Gallardo, F. & Navia, R. (2005) Soil retention capacity of phenols from biologically pre-treated Kraft mill wastewater. Water, Air & Soil Pollution, 163, 325339.CrossRefGoogle Scholar
Dong, Y. & Feng, S.S. (2005) Poly(d, l-lactide-co-glycolide)/ montmorillonite nanoparticles for oral delivery of anticancer drugs. Biomaterials, 26, 60686076.Google Scholar
Droy-Lefaix, M.T. & Tateo, F. (2006) Clays and clay minerals as drugs. Pp. 743752 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam.CrossRefGoogle Scholar
Drozdov, A.D. & Christiansen, J.C. (2007) Cyclic deformation of ternary nanocomposites: Experiments and modelling. International Journal of Solids and Structures, 44, 26772694.Google Scholar
EPA (2007) Nanotechnology White Paper. U.S. Environmental Protection Agency Report EPA 100/B-07/001, Washington DC, USA.Google Scholar
Escudey, M., Galindo, G., Förter, J.E., Briceño, M., Diaz, P. & Chang, A. (2001) Chemical forms of phosphorus of volcanic ash-derived soils in Chile. Communications in Soil Science and Plant Analysis, 32, 601616.CrossRefGoogle Scholar
Fornes, T.D., Yoon, P.J., Keskkula, H. & Paul, D.R. (2001) Nylon 6 nanocomposites: effect of matrix molecular weight. Polymer, 42, 99299940.CrossRefGoogle Scholar
Fukushima, Y. & Inagaki, S. (1987) Synthesis of an intercalated compound of montmorillonite and 6-polyamide. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 5, 473482.CrossRefGoogle Scholar
Giannelis, E.P., Krishnamoorti, R. & Manias, E. (1999) Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Advanced Polymer Science, 138, 107147.Google Scholar
Gilman, J.W. (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Applied Clay Science, 15, 3149.Google Scholar
Gilman, J.W., Jackson, C.L., Lomakin, S., Morgan, A.B., Harris, R., Manias, E., Giannelis, E.P., Wuthenow, M., Hilton, D. & Phillips, S.H. (2000) Flammability properties of polymer-layered silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chemistry of Materials, 12, 18661873.CrossRefGoogle Scholar
Gomes, C.S.F. & Silva, J.B.P. (2007) Minerals and clay minerals in medical geology. Applied Clay Science, 36, 421.Google Scholar
Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Formoso, M.L.L., Galán, E., Kogure, T. & Stanjek, H. (2006) Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clay Minerals, 41, 863877.Google Scholar
Hall, P.L., Churchman, G.J. & Theng, B.K.G. (1985) The size distribution of allophane unit particles in aqueous suspensions. Clays and Clay Minerals, 33, 345349.Google Scholar
Hashizume, H. & Theng, B.K.G. (2007) Adenine, adenosine, ribose and 5’-AMP adsorption to allophane. Clays and Clay Minerals, 55, 599605.CrossRefGoogle Scholar
Hedley, C.B., Yuan, G. & Theng, B.K.G. (2007) Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants. Applied Clay Science, 35, 180188.CrossRefGoogle Scholar
Holister, P., Weener, J.W., Román, C. & Harper, T. (2003) Nanoparticles. Cientifica, 3, 111.Google Scholar
Horrocks, A.R., Kandola, B.K., Davies, P.J., Zhang, S. & Padbury, S.A. (2005) Developments in flame retardant textiles-a review. Polymer Degradation and Stability, 88, 312.Google Scholar
Huang, X. & Netravali, A.N. (2007) Characterization of flax fiber reinforced soy protein resin based green composites modified with nano-clay particles. Composites Science and Technology, 67, 20052014.CrossRefGoogle Scholar
Huang, M., Yu, J. & Ma, X. (2004) Studies on the properties of montmorillonite reinforced thermoplastic starch composites. Polymer, 45, 70177023.CrossRefGoogle Scholar
Huo, Q., Margolese, D.I. & Stucky, G.D. (1996) Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chemistry of Materials, 8, 11471160.Google Scholar
Ibarra, L., Rodriguez, A. & Mora, I. (2007) Ionic nanocomposites based on XNBR-OMg filled with layered nanoclays. European Polymer Journal, 43, 753761.Google Scholar
Jara, A., Goldberg, S. & Mora, M.L. (2005) Studies of the surface charge of amorphous aluminosilicates using surface complexation models. Journal of Colloid and Interface Science, 292, 160170.Google Scholar
Jara, A., Violante, A., Pigna, M. & Mora, M.L. (2006) Mutual interactions of sulfate, oxalate, citrate and phosphate on synthetic and natural allophanes. Soil Science Society of America Journal, 70, 337346.Google Scholar
Jeon, H.S., Rameshwaram, J.K., Kim, G. & Weinkauf, D.H. (2003) Characterization of polyisoprene-clay nanocomposites prepared by solution blending. Polymer, 44, 57495758.Google Scholar
Joussein, E., Petit, S. & Delvaux, B. (2007) Behavior of halloysite clay under formamide treatment. Applied Clay Science, 35, 1724.Google Scholar
Kashiwagi, T., Du, F., Douglas, J.F., Winey, K.I., Harris, R.H. Jr & Shields, J.R. (2005) Nanoparticle networks reduce the flammability of polymer nanocomposites. Nature Materials, 4, 928933.CrossRefGoogle ScholarPubMed
Khider, K., Akretche, D.E. & Larbot, A. (2004) Purification of water effluent from a milk factory by ultrafiltration using Algerian clay support. Desalination, 167, 147151 Google Scholar
Kim, J.M. & Stucky, G.D. (2000) Synthesis of highly ordered mesoporous silica materials using sodium silicate and amphiphilic block copolymers. Chemical Communications, 1159-1160.Google Scholar
Kim, J., Grate, J.W. & Wang, P. (2006) Nanostructures for enzyme stabilization. Chemical Engineering Science, 61, 10171026.Google Scholar
Kornmann, X., Lindberg, H. & Berglund, L.A. (2001) Synthesis of epoxy-clay nanocomposites: influence of the nature of the clay on structure. Polymer, 42, 13031310.CrossRefGoogle Scholar
Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C. & Beck, J.S. (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359, 710712.Google Scholar
Lee, L., Saxena, D. & Stotzky, G. (2003) Activity of free and clay-bound insecticidal proteins from Bacillus thuringiensis subsp. israelensis against the mosquit. Culex pipiens. Applied and Environmental Microbiology, 69, 41114115 CrossRefGoogle Scholar
Lepoittevin, B., Devalckenaere, M., Pantoustier, N., Alexandre, M., Kubies, D., Calberg, C., Jérome, R. & Dubois, P. (2002) Poly(£-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties. Polymer, 43, 40174023.Google Scholar
Li, Z. & Hu, N. (2003) Direct electrochemistry of heme proteins in their layer-by-layer films with clay nanoparticles. Journal of Electroanalytical Chemistry, 558, 155165.Google Scholar
Liff, S.M., Kumar, N. & McKinley, G.H. (2007) Highperformance elastomeric nanocomposites via solvent- exchange processing. Nature Materials, 6, 7683.Google Scholar
Liu, Y. & Pinnavaia, T.J. (2002) Assembly of hydrothermally stable aluminosilicate foams and largepore hexagonal mesostructures from zeolite seeds under strongly acidic conditions. Chemistry of Materials, 14, 35.Google Scholar
Liu, Y., Liu, H. & Hu, N. (2005) Core-shell nanocluster films of hemoglobin and clay nanoparticle: Direct electrochemistry and electrocatalysis. Biophysical Chemistry, 117. 27-37.Google Scholar
Lodha, P. & Netravali, A.N. (2005) Characterization of stearic acid modified soy protein isolate resin and ramie fiber reinforced ‘green’ composites. Composites Science and Technology, 65, 12111225.CrossRefGoogle Scholar
Lojou, E., Giudici-Orticoni, M.T. & Bianco, P. (2005) Direct electrochemistry and enzymatic activity of bacterial polyhemic cytochrome c3 incorporated in clay films. Journal of Electroanalytical Chemistry, 579, 199213.CrossRefGoogle Scholar
Lu, Jiankun, Ke, Yucai, Qi, Zongneng & Yi, Xiao-Su. (2001) Study on intercalation and exfoliation behaviour of organoclays in epoxy resin. Journal Polymer Science Part B: Polymer Physics, 39, 115120.Google Scholar
Luduena, L.N., Alvarez, V.A. & Vazquez, A. (2007) Processing and microstructure of PCL/clay nanocomposites. Materials Science and Engineering A, 460-461, 121-129.Google Scholar
Macilwain, C. (1999) US plans large funding boost to support nanotechnology boom. Nature, 400, 95.CrossRefGoogle Scholar
McLaren, R.G. & Cameron, K.C. (2000) Inorganic soil colloids. Pp. 159167 in: Soil Science: Sustainable Production and Environmental Protection, Second Edition. Oxford University Press, New Zealand.Google Scholar
Maharsia, R.R. & Jerro, H.D. (2007) Enhancing tensile strength and toughness in syntactic foams through nanoclay reinforcement. Materials Science and Engineering A, 454-455, 416422.CrossRefGoogle Scholar
Malucelli, G., Ronchetti, S., Lak, N., Priola, A., Dintcheva, N.T. & La Mantia, F.P. (2007) Intercalation effects in LDPE/o-montmorillonites nanocomposites. European Polymer Journal, 43, 328335.Google Scholar
Manias, E., Touny, A., Wu, L., Strawhecker, K., Lu, B. & Chung, T.C. (2001) Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chemistry of Materials, 13, 35163523.Google Scholar
Matus, F., Amigo, X. & Kristiansen, S.M. (2006) Aluminium stabilization controls organic carbon levels in Chilean volcanic soils. Geoderma, 132, 158168.Google Scholar
Medina, C., Santos-Martinez, M.J., Radomski, A., Corrigan, O.I. & Radomski, M.W. (2007) Nanoparticles: pharmacological and toxicological significance. British Journal of Pharmacology, 150, 552558.Google Scholar
Moelans, D., Cool, P., Baeyens, J. & Vansant, E.F. (2005) Using mesoporous silica materials to immobilise biocatalysis-enzymes. Catalysis Communications, 6, 307311 Google Scholar
Montarges-Pelletier, E., Bogenez, S., Pelletier, M., Razafitianamaharavo, A., Ghanbaja, J., Lartiges, B. & Michot, L. (2005) Synthetic allophane-like particles: textural properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 255, 110.Google Scholar
Mora, M.L. (1992) Síntesis, caractizacíon y reactividad de un suelo alofánico modelo. PhD thesis, Universidad de Santiago de Chile.Google Scholar
Mora, M.L., Escudey, M. & Galindo, G. G. (1994) Sintesis y caracterización de suelos alofánicos. Boletín de la Sociedad Chilena de Química, 39, 237243.Google Scholar
Mora, M.L., Shene, C., Violante, A., Demanet, R. & Bolan, N.S. (2005) The effect of organic matter and soil chemical properties on sulfate sorption in Chilean volcanic soils. P. 444. in: Soil Abiotic and Biotic Interactions and the Impact on the Ecosystem and Human Welfare (Huang, P.M., Violante, A., Bollag, J.-M. & Vityakon, P., editors). Science Publishers, Enfield, New Hampshire, USA.Google Scholar
Nam, P.H., Maiti, P., Okamoto, M., Kotaka, T., Hasegawa, N. & Usuki, A. (2001) A hierarchical structure and properties of intercalated polypropylene/clay nanocomposites. Polymer, 42, 96339640.Google Scholar
Navia, R., Fuentes, B., Lorber, K.E., Mora, M.L. & Diez, M.C. (2005) In-series columns adsorption performance of Kraft mill wastewater pollutants onto volcanic soil. Chemosphere 60, 870878.Google Scholar
Ng, C.B., Ash, B.J., Schadler, L.S. & Siegel, R.W. (2001) A study of the mechanical and permeability properties of nano- and micron-TiO2 filled epoxy composites. Advanced Composites Letters, 10, 101111.Google Scholar
Nowack, B. & Bucheli, T.D. (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150, 522.Google Scholar
Parfitt, R.L. (1990) Allophane in New Zealand-A review. Australian Journal of Soil Research, 28, 343360.Google Scholar
Park, H.M., Lee, W.K., Park, C.Y., Cho, W.J. & Ha, C.S. (2003) Environmentally friendly polymer hybrids. Journal of Materials Science, 38, 909915.Google Scholar
Patel, H.A., Somani, R.S., Bajaj, H.C. & Jasra, R.V. (2006) Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bulletin of Materials Science, 29, 133145.CrossRefGoogle Scholar
Pinnavaia, T.J. & Beall, G.W., editors (2000) Polymer-Clay Nanocomposites. John Wiley & Sons, New York, 370 pp.Google Scholar
Porta, J., Lopez-Acevedo, M. & Roquero, C. (2003) Edafología para la agricultura y el medio ambiente. Ediciones Mundi-Prensa, Madrid, España, 929 pp.Google Scholar
Qian, L. & Hinestroza, J.P. (2004) Application of nanotechnology for high performance textiles. Journal of Textiles and Apparel, Technology and Management, 4, 17.Google Scholar
Ragauskas, A.J. (2004) Big opportunities with tiny technology. Pulp Paper, 78, 80.Google Scholar
Rahman, M.B.A., Tajudin, S.M., Hussein, M.Z., Rahman, R.N.S.R., Salleh, A.B. & Basri, M. (2005) Application of natural kaolin as support for the immobilization of lipase from Candida rugosa as biocatalyst for effective esterification. Applied Clay Science, 29, 111116.Google Scholar
Ray, V.V., Banthia, A.K. & Schick, C. (2007) Fast isothermal calorimetry of modified polypropylene-clay nanocomposites. Polymer, 48, 24042414.Google Scholar
Redel, Y.D., Rubio, R., Rouanet, J.L. & Borie, F. (2007) Phosphorus bioavailability affected by tillage and crop rotation on a Chilean volcanic derived Ultisol. Geoderma, 139, 388396.Google Scholar
Rong, M.Z., Zhang, M.Q., Zheng, Y.X., Zeng, H.M., Walter R & Friedrich, K. (2001) Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer, 42, 167183.Google Scholar
Rosas, A., Mora, M.L., Jara, A., López, R., Rao, M.A. & Gianfreda, L. (2008) Catalytic behavior of acid phosphatase immobilized on natural supports in the presence of manganese or molybdenum. Geoderma, 145, 7783.CrossRefGoogle Scholar
Ruiz-Hitzky, E. & van Meerbeek, A. (2006) Clay mineral- and organoclay-polymer nanocomposite. Pp. 583621 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam.Google Scholar
Shahwan, T., Erten, H.N. & Unugur, S. (2006) A characterization study of some aspects of the adsorption of aqueous Co2+ ions on natural bentonite clay. Journal of Colloid and Interface Science, 300, 447452.Google Scholar
Siegel, R.W., Chang, S.K., Ash, B.J., Stone, J., Ajayan, P.M., Doremus, R.W. & Schadler, L.S. (2001) Mechanical behavior of polymer and ceramic matrix nanocomposites. Scripta Materialia, 44, 20612064.CrossRefGoogle Scholar
Subramani, S., Lee, J.Y., Kim, J.H. & Cheong, I.W. (2007) Crosslinked aqueous dispersion of silylated poly(- urethane—urea)/clay nanocomposites. Composites Science and Technology, 67, 15611573.CrossRefGoogle Scholar
Sun, Q., Schork, F.J. & Deng, Y. (2007) Water-based polymer/clay nanocomposite suspension for improving water and moisture barrier in coating. Composites Science and Technology, 67, 18231829.Google Scholar
Tan, K.H. (1998) Colloidal chemistry of inorganic soil constituents. Pp. 177258 in: Principles of Soil Chemistry. Marcel Dekker, New York, USA.Google Scholar
Tanev, P.T. & Pinnavaia, T.J. (1995) A neutral templating route to mesoporous molecular sieves. Science, 267, 865867 Google Scholar
Tanev, P.T., Chibwe, M. & Pinnavaia, T.J. (1994) Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature, 368, 321.Google Scholar
Tang, Z.Y., Wu, L.H., Luo, Y.M. & Christie, P. (2009) Size fractionation and characterization of nanocolloidal particles in soils. Environmental Geochemistry and Health, 31, 110.Google Scholar
Theng, B.K.G. & Yuan, G. (2008) Nanoparticles in the soil environment. Elements, 4, 393397.Google Scholar
Theng, B.K.G., Churchman, G.J., Gates, W.P. & Yuan, G. (2008) Organically modified clays for pollution uptake and environmental protection. Pp 145174 in: Soil Mineral-Microbe-Organic Interactions (Huang, Q., Huang, P.M. & Violante, A., editors). Springer-Verlag, Berlin.Google Scholar
Tjong, S.C. (2006) Structural and mechanical properties of polymer nanocomposites. Materials Science and Engineering: R-Reports, 53, 73197.Google Scholar
Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T. & Kamigaito, O. (1993) Synthesis of nylon 6-clay hybrid. Journal of Materials Research, 8, 11791184.Google Scholar
Vamvakaki, V. & Chaniotakis, N.A. (2007) Immobilization of enzymes into nanocavities for the improvement of biosensor stability. Biosensors and Bioelectronics, 22, 26502655 Google Scholar
Van Der Voort, P., Mathieu, M., Mees, F. & Vansant, E.F. (1998) Synthesis of high-quality MCM-48 and MCM-41 by means of the GEMINI surfactant method. Journal of Physical Chemistry B, 102, 88478851.Google Scholar
Vidal, G., Navia, R., Levet, L., Mora, M.L. & Diez, M.C. (2001) Kraft mill anaerobic color enhancement by a fixed-bed adsorption system. Biotechnology Letters, 23, 861865.Google Scholar
Villegas, R.A.S., Espírito Santo, J.L. Jr, Mattos, M.C.S., Aguiar, M.R.M.P. & Guarino, A.W.S. (2007) Natural Brazilian clays: Efficient green catalysts for coordination of styrene. Catalysis Communications, 8, 97100.Google Scholar
Violante, A. & Pigna, M. (2002) Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Science Society of America Journal, 66, 17881796.Google Scholar
Volzone, C. (2007) Retention of pollutant gases: Comparison between clay minerals and their modified products. Applied Clay Science, 36, 191196 Google Scholar
Wada, K. (1989) Allophane and imogolite. Pp. 10511087 in: Minerals in Soil Environments, 2 nd edition (Dixon, J.B. & Weed, S.B., editors). Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
Wang, K., Wang, C., Li, J., Su, J., Zhang, Q., Du, R. & Fu, Q. (2007) Effects of clay on phase morphology and mechanical properties in polyamide 6/EPDM-g-MA/organoclay ternary nanocomposites. Polymer, 48, 21442154.Google Scholar
Wang, P. (2006) Nanoscale biocatalyst systems. Current Opinion in Biotechnology, 17, 574579.Google Scholar
Wei, C.L., Zhang, M.Q., Rong, M.Z. & Friedrich, K. (2002) Tensile performance improvement of low nanoparticle-filled polypropylene composites. Composites Science and Technology, 62, 13271340.Google Scholar
Woignier, T., Braudeau, E., Doumenc, H. & Rangon, L. (2005) Supercritical drying applied to natural ‘gels’: allophanic soils. Journal of Sol-Gel Science and Technology, 36, 6168.Google Scholar
Woignier, T., Primera, J. & Hashmy, A. (2006) Application of the DLCA model to ‘natural’ gels: the allophanic soils. Journal of Sol-Gel Science and Technology, 40, 201207.CrossRefGoogle Scholar
Woignier, T., Pochet, G., Doumenc, H., Dieudonné, P. & Duffours, L. (2007) Allophane: a natural gel in volcanic soils with interesting environmental properties. Journal of Sol-Gel Science and Technology, 41, 2530 Google Scholar
Wu, S., Liu, B. & Li, S. (2005) Behaviors of enzyme immobilization onto functional microspheres. International Journal of Biological Macromolecules, 37, 263267 Google Scholar
Yasmin, A., Abot, J.L. & Daniel, I.M. (2003) Processing of clay/epoxy nanocomposites by shear mixing. Scripta Materialia, 49, 8186.Google Scholar
Yeh, J.M., Liou, S.J., Lai, M.C., Chang, Y.W., Huang, C.Y., Chen, C.P., Jaw, J.H., Tsai, T.Y. & Yu, Y.H. (2004) Comparative studies of the properties of poly(methyl methacrylate)-clay nanocomposite materials prepared by in situ emulsion polymerization and solution dispersion. Journal of Applied Polymer Science, 94, 19361946.Google Scholar
Yuan, G. & Wu, L. (2007) Allophane nanoclay for the removal of phosphorus in water and wastewater. Science and Technology of Advanced Materials, 8, 6062.Google Scholar
Zhang, Z., Zhao, N., Wei, W, Wu, D. & Sun, Y. (2006) Synthesis and characterization of poly(butyl acrylate-comethyl methacrylate)/clay nanocomposites via emulsion polymerization. International Journal of Nanoscience, 5, 291297.Google Scholar
Zhao, D.Y., Feng, J.L., Huo, Q.S., Melosh, N., Fredrickson, G.H., Chmelka, B.F. & Stucky, G.D. (1998a) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279, 548552.Google Scholar
Zhao, D.Y., Huo, Q.S., Feng, J.L., Chmelka, B.F. & Stucky, G.D. (1998b) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 120, 60246036.Google Scholar
Zhou, H.X. & Dill, K.A. (2001) Stabilization of proteins in confined spaces. Biochemistry, 40, 1128911293.CrossRefGoogle ScholarPubMed
Zhou, X., Huang, Q., Chen, S. & Yu, Z. (2003) Adsorption of the insecticidal protein of Bacillus thuringiensis on montmorillonite, kaolinite, silica, goethite and Red soil. Applied Clay Science, 30, 8793.Google Scholar