Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T00:57:37.620Z Has data issue: false hasContentIssue false

Mixed magnesium-aluminiun hydroxides. I. Preparation and characterization of compounds formed in dialysed systems

Published online by Cambridge University Press:  09 July 2018

M. C. Gastuche
Affiliation:
Musée Royal de l'Afrique Centrale, Tervuren, *Faculté des Sciences Agronomiques et Institut Interfacultaire des Sciences Appliqués, Université de Louvain, Belgium
G. Brown
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts, England
M. M. Mortland
Affiliation:
Department of Soil Science, Michigan State University, East Lansing, Michigan, U.S.A.

Abstract

The materials formed by dialysis of the precipitates formed by the reaction of NaOH with mixed Mg-Al solutions are described. In addition to aluminium and magnesium hydroxides, two hydrocarbonates having Mg/Al ratios of about 5 : 1 and 2 : 1 are formed, essentially pure, from solutions with Mg/Mg + Al molar ratios of 0.8 and 0.7, respectively. X-ray powder data shows that they have partially ordered hexagonal layer structures with unit layer dimensions a = 3.048 Å, layer thickness 7.60 Å for the Al-rich compound and a = 3.072 Å, layer thickness 7.92 Å for the Al-poor compound. X-ray and chemical data show that the new compounds resemble the minerals hydrotalcite and manasseite and also the compounds described as Mg-Al hydroxides by Feitknecht.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, G. (1951) Clay Miner. Bull. 1, 109.Google Scholar
Brown, G. & Gastuche, M.C. (1967) Clay Miner. 7, 193.Google Scholar
Brydon, J.E. & Ross, G.J. (1966) Proc. soil sci. Soc. Am. 30., 740.CrossRefGoogle Scholar
Feitknecht, W. (1954) Kolloidzeitschrift., 136, 52.Google Scholar
Feitknecht, W. & Fischer, G. (1935) Helv. chim Acta., 18, 555.CrossRefGoogle Scholar
Feitknecht, W. & Gerber, M. (1942) Helv. chim. Acta., 25, 131.CrossRefGoogle Scholar
Feitknecht, W. & Held, F. (1944) Helv. chim. Acta., 27, 1495.CrossRefGoogle Scholar
Frondel, C. (1941) Am. Miner. 26, 295.Google Scholar
Gastuche, M.C. (1964) Clays Clay Miner. 12, 471.Google Scholar
Gastuche, M.C.& Herbillon, A. (1962) Bull. Soc. chim. Fr. 1404.Google Scholar
Gastuche, M.C., Bruggenwert, T. & Mortland, M.M. (1964) Soil Sci. 98, 281.Google Scholar
Hénin, S. & Cailère, S. (1961) Coll. Int. du C.N.R.S. Genèse et Synthèse des Argiles, Paris., p. 31.Google Scholar
Kasper, J.S., Lucht, C.M. & Harker, D. (1950) Acta crystallogr. 3, 436.Google Scholar
Kolesova, V.A. & Ryskin, J. (1959) Optics Spectrose., Wash. 7, 165.Google Scholar
Mackenzie, R.C. (1951) J. Colloid Sci. 6, 219.Google Scholar
Mortland, M.M. & Gastuche, M.C. (1962) C.r. hebd. Séanc. Acad. Sci., Paris., 255, 2131.Google Scholar
Newnham, R.E. (1961) Mineralog. Mag. 32, 683.Google Scholar
Radoslovich, E.W. (1963) 1st Int. Clay Conf. (Rosenqvist, I. Th. and Graff-Petersen, P., editors), Vol. 1, p. 1. Pergamon Press, Oxford.Google Scholar
Roy, D.M., Roy, R. & Osborn, E.F. (1953) Am. J. Sci. 251, 337.Google Scholar
Smithson, F. & Brown, G. (1957) Mineralog. Mag. 31, 381.Google Scholar
Turner, R.C. & Brydon, J.E. (1962) Science, N.Y. 136, 1052.CrossRefGoogle Scholar
White, E.W., McKinstry, H.A. & Bates, T.F. (1958) Advances in X-ray Analysis. (Mueller, W. A., editor), Vol. 2, p. 239.Google Scholar