Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-02T20:41:27.906Z Has data issue: false hasContentIssue false

Mineralogy and geochemistry of Miocene deposits at Alcubierre Sierra, central sector of the Ebro Basin, Spain

Published online by Cambridge University Press:  09 July 2018

B. Bauluz Lazaro
Affiliation:
Departamento de Ciencias de la Tierra Area de Cristalografía y Mineralogía
C. Arenas Abad
Affiliation:
Departamento de Ciencias de la Tierra Area de Estratigrafía, Universidad de Zaragoza. Pza. San Francisco s/n, 50.009 Zaragoza, Spain
C. Fernandez-Nieto
Affiliation:
Departamento de Ciencias de la Tierra Area de Cristalografía y Mineralogía
J. M. Gonzalez Lopez
Affiliation:
Departamento de Ciencias de la Tierra Area de Cristalografía y Mineralogía

Abstract

Two profiles in Miocene fluvio-lacustrine deposits consist of sandy, marly, lutitic and carbonatic levels constituted by variable percentages of quartz, calcite and clay minerals as major components, and feldspars, dolomite and occasionally gypsum and anhydrite as minor ones. The clay minerals are inherited and consist mostly of micas, with minor quantities of chlorites, pyrophyllites and kaolinites. The crystallochemical parameters of the micas indicate muscovitic compositions and their uniformity through both the different rocks and their silt and clay fractions suggest the same provenance source area, possibly located northward.

Clay minerals concentrate preferentially Li, Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Cs, Ba, Zr, Hf, Th, U and REE whereas the authigenic carbonates concentrate Mn and Sr. The Sc, Cr, Th, Y, Zr and REE values in clay minerals indicate that the provenance source area of these deposits was similar in composition to the average continental upper crust, probably as a result of sedimentary recycling processes.

Zeolitic levels constituted by different proportions of analcime and smectite as major components outcrop at the top of the profiles. The analcimes show anhedral to euhedral morphologies, with grain-size ranging between 1 and 20 μm, and Si/Al ratios ranging from 2.2 to 2.5. The smectites are dioctahedral and beidellitic in composition. The zeolitic levels present significant chemical differences relative to the other ones, such as higher overall REE contents, more pronounced negative Eu anomalies and higher (La/Yb)n, Th/Sc and La/Sc ratios, suggesting a different provenance source area. Their chondrite-normalized REE patterns reflect the possibility that the starting materials were pyroclastic eruptive rocks originating from intracrustal partial melting. The variable analcime and smectite percentages are attributed to variations in H+/(Na+ + K+) and K+/(Na + Ca2+ + Mg2+) activity ratios and silica and water activities in the pore-waters during diagenetic processes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arenas, C. (1993) Sedimentología y Paleogeografía del Terciaro del margen pirenaico y sector central de la Cuenca del Ebro (zona aragonesa occidental). Tesis Doctoral, Univ. Zaragoza, Spain.Google Scholar
Arenas, C., Paroo, G., Villena, J. & Pérez, A. (1989) Facies lacustres carbonatadas de la Sierra de Alcubierre (Sector Central de la Cuenca del Ebro). Com. XII Congreso Espahol de Sedimentologia, Bilbao, 71-74.Google Scholar
Barahona, E. (1974) Arcillas de ladrillería de la provincia de Granada: Evaluación de algunos ensayos de materias primas. Tesis Doc. Univ. Granada, España.Google Scholar
Cantrell, K.J. & Byrne, R.H. (1987) Rare earth element complexation by carbonate and oxalate ions. Geochim. Cosmochim. Acta 51, 597605.Google Scholar
Defeeyes, K.S. (1959) Zeolites in sedimentary rocks. J. Sed. Pertrol. 29, 602–609.Google Scholar
Emmerman, R., Daieva, L., Schneider, J. (1975) Petrologic significance of rare earth distribution in granites. Contr. Miner. Petrol. 52, 267283.Google Scholar
Frankart, R. & Herbillon, A.J. (1970) Présence et genèse d'analcime dans les sols sodiques de la Basse Ruzizi (Burundi). Bull. Gr Ft. Argiles, 22, 7879.Google Scholar
Garrels, R.M. & Christ, C.L. (1965) Solutions, Minerals and Equilibria. Harper & Row, New York.Google Scholar
Garrels, R.M. & Mckenzie, F.T. (1967) Origin of the chemical composition of some springs and lakes. Adv. Chem Series, Am. Chem. Soc. 67, 222242.Google Scholar
Greene-Kelly, R. (1953) Identification of montmoril-lonoids. J. Soil Sci. 4, 233–337.Google Scholar
Hardie, L.A. & Eugster, H.P. (1970) The evolution of close-basin brines. Mineral. Soc. Amer. Spec. Pap. 3, 273290.Google Scholar
Hay, R.L. (1963) Zeolitic weathering in Olduvai Gorge, Tanganyka. Geol. Soc. Amer. Bull. 74, 12811286.Google Scholar
Hay, R.L. (1964) Phillipsite of saline lakes and soils. Am. Miner. 49, 13661387.Google Scholar
Hay, R.L. (1966) Zeolites and zeolitic reactions in sedimentary rocks. Geol. Soc. Amer. Spec. Pap. 85, 130pp.Google Scholar
Hay, R.L. (1970) Silicate reactions in three lithofacies of a semi-arid basin Olduvai Gorge, Tanzania. Mineral. Soc. Amer. Spec. Pap. 3, 237255.Google Scholar
Hemley, J.J. (1959) Some equilibria in the system K2O-Al2O3-SiO2-H2O. Am. J. Sci. 257, 241270.Google Scholar
Hess, P.C. (1966) Phase equilibria of some minerals in the K2O-Na2O-Al2O3-SiO2-H2O system at 25° and 1 atmosphere. Am. J. Sci. 264, 289309.Google Scholar
Hirst, J.P.P. (1983) Oligo-Miocene alluvial systems in the northern Ebro Basin, Huesca Province, Spain. PhD thesis, Univ. Cambridge, UK.Google Scholar
Jones, B.F. (1966) Geochemical evolution of closed basin waters in the western Great Basin. Sym. Salt, 2d, Ohio Geol. Soc., Cleveland, Ohio, 181-200.Google Scholar
Kobler, B. (1968) Evaluation quantitative du métamor-phisme par la cristallinité de l'illite. Bull. Centre Rech. . Pau-SNPA, 2, 385397.Google Scholar
Mccarthy, T.S. & Kable, E.J.D. (1978) On the behaviour of rare earth elements during partial melting of granitic rocks. Chem. Geol. 22, 2129.Google Scholar
Middelburg, J. J., Van Der Weijden, C.H. & Woittiez, J.R. (1988) Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem. Geol. 68, 253273.Google Scholar
Muñoz, J.A., Puigdefábregas, C. & Fontboté, J.M. (1983) El Pirineo. Libro Jubilar J.M. Ríds ‘Geologia de España’ Tomo II. Inst. Geol. Min. Esp., 161-168. Google Scholar
Nesbitt, H.W. (1979) Mobility and fractionation of rate earth elements during weathering of granodiorite. Nature, 279, 206210.Google Scholar
Pipkin, P. (1967) Mineralogy of 140-foot core from Wilcox Playa, Cochise Arizona. Am. Ass. Petroleum Geologists Bull. 51, 478pp.Google Scholar
Quirantes, J. (1978) Estudio sedimentológico y estratigrá-rico del Terciario continental de los Monegros. Inst. Fernando El Cató1ico CSIC, Zaragoza, 207pp.Google Scholar
Saha, P. (1959) Geochemical and X-ray investigation of natural and synthetic analcites. Am. Miner. 44, 300–313.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. U.S. Geol. Surv. Prof. Paper, 391-e, 31p.Google Scholar
Sheppard, R.A. & Gude, A.J. (1968) Distribution and genesis of authigenic silicate minerals in tufts of Pleistocene Lake Tecopa, Inyo county California. Geol. Surv. Prof. Paper 597, 138.Google Scholar
Sheppard, R.A. & Gude, A.J. (1969) Diagenesis of tufts in the Barstow Formation, Mud Hills, San Bernardino county, California. Geol. Surv. Prof. Paper 634, 135.Google Scholar
Sholkovitz, E.R. (1992) Chemical evolution of rare earth elements: fractionation between colloidal and solution phases of filtered river water. Earth Planet. Sci. Lett. 114, 7484.Google Scholar
Stevens, R.E. (1932) Hydrogenion concentrations caused by the solution of silicate minerals. J. Washington Acad. Sci., 22, 540547.Google Scholar
Surdam, R.C. (1981) Zeolites in closed hydrologic systems. Pp. 6591 in: Reviews in Mineralogy 4. Mineralogical Society of America, Washington, DC.Google Scholar
Taylor, S.R. & Mclennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.Google Scholar
Van Houten, F. B. (1960) Composition of Upper Triassic Lockatong argillite, West-Central New Jersey. J. Geology, 68, 666669.Google Scholar