Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T16:00:37.339Z Has data issue: false hasContentIssue false

Mineralogy and chemistry of a new halloysite deposit from the Rio de Janeiro pegmatite province, south-eastern Brazil

Published online by Cambridge University Press:  08 March 2021

Victor Matheus Joaquim Salgado-Campos*
Affiliation:
Federal University of Rio de Janeiro, Institute of Geosciences, Graduate Program in Geology, Athos da Silveira Ramos Avenue, 274 – Cidade Universitária, Rio de Janeiro – RJ, 21941-909, Brazil Centre for Mineral Technology, Division for Technological Characterization, Avenida Pedro Calmon, 900 – Cidade Universitária, Rio de Janeiro – RJ, 21941-908, Brazil
Luiz Carlos Bertolino
Affiliation:
Centre for Mineral Technology, Division for Technological Characterization, Avenida Pedro Calmon, 900 – Cidade Universitária, Rio de Janeiro – RJ, 21941-908, Brazil State University of Rio de Janeiro, Faculty of Geology, Department of Mineralogy and Igneous Petrology, São Francisco Xavier Street, 524 – Maracanã, Rio de Janeiro – RJ, 20550-000, Brazil
Francisco José da Silva
Affiliation:
Federal Rural University of Rio de Janeiro, Institute of Agronomy, Department of Petrology and Geotectonics, BR 465 Highway, Km 07, s/n Zona Rural – Seropédica – RJ, 23890-000, Brazil
Julio Cezar Mendes
Affiliation:
Federal University of Rio de Janeiro, Institute of Geosciences, Graduate Program in Geology, Athos da Silveira Ramos Avenue, 274 – Cidade Universitária, Rio de Janeiro – RJ, 21941-909, Brazil
Reiner Neumann
Affiliation:
Centre for Mineral Technology, Division for Technological Characterization, Avenida Pedro Calmon, 900 – Cidade Universitária, Rio de Janeiro – RJ, 21941-908, Brazil Federal University of Rio de Janeiro, Graduate Program in Geosciences, National Museum, Av. Quinta da Boa Vista, S/N – Bairro Imperial de São Cristóvão, Rio de Janeiro – RJ, 20940-040, Brazil

Abstract

Halloysite is a 1:1 dioctahedral clay mineral that has been studied widely for applications in nanotechnology and as a mineral exploration guide for recognizing regolith-hosted heavy rare earth element (HREE) deposits. In Brazil, pegmatites from the state of Rio de Janeiro have been catalogued, but their potential to host halloysite deposits has never been studied. After a mineral exploration programme, one pegmatite with considerable halloysite contents and economic potential was discovered. This study reports the mineralogical and chemical characterization of the halloysite of this pegmatite and evaluates the possibility of clay-adsorbed HREE deposits, like that in the Zudong (China) regolith-hosted HREE deposit. Seven samples were collected in horizontal channels. Bulk samples and clay fractions (<2 μm) were analysed by quantitative mineral analysis (X-ray diffraction/Rietveld method), chemical analysis (major elements by X-ray fluorescence and Y, U, Th and rare earth elements by inductively coupled plasma mass spectrometry), scanning electron microscopy, Fourier-transform infrared spectroscopy, particle-size analysis, nitrogen physisorption and cation-exchange capacity. Mixed polygonal/cylindrical halloysite-7Å in concentrations between 6.3 and 35.4 wt.% in bulk samples and between 58.0 and 89.8 wt.% in the clay fractions were identified in the pegmatite. The clay fractions presented an average chemical composition of 45.46 wt.% SiO2, 36.10 wt.% Al2O3, 14.62 wt.% loss on ignition and 1.04 wt.% Fe2O3, as well as technological properties close to those observed in world-class halloysite deposits such as Dragon Mine (USA) and Matauri Bay (New Zealand). The clay minerals did not present significant HREE contents.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Lawrence Warr

References

Angeleri, F.B., Souza Santos, P. & Souza Santos, H. (1963) Características físico-químicos e cerâmicos de caulins e argilas usados na Indústria Cerâmica de S. Paulo. VII – Caulins creme amarelados de Parelheiros, Estado de S. Paulo. Cerâmica, 9, 19.Google Scholar
ASTM C837-09 (2009) Standard Test Method for Methylene Blue Index of Clay. ASTM International, Wast Coshohocken, PA, USA.Google Scholar
Azevedo, A.M.V. & Souza Santos, P. (1975) Estudo da utilização do acetato de potássio na identificação de caulinita e haloisita em caulins brasileiros. Cerâmica, 21, 191206.Google Scholar
Barrett, E.P., Joyner, L.G. & Halenda, P.P. (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73, 373380.CrossRefGoogle Scholar
Brathwaite, R.L., Christie, A.B., Faure, K., Townsend, M.G. & Terlesk, S. (2012) Origin of the Matauri Bay halloysite deposit, Northland, New Zealand. Mineralium Deposita, 47, 897910.CrossRefGoogle Scholar
Brigatti, M.F., Guidotti, C.V., Malferrari, D. & Sassi, F.P. (2008) Single-crystal X-ray studies of trioctahedral micas coexisting with dioctahedral micas in metamorphic sequences from western Maine. American Mineralogist, 93, 396408.CrossRefGoogle Scholar
Brindley, G.W. & Brown, G. (editors) (1980) Crystal Structure of Clay Minerals and Their X-Ray Identification. Mineralogical Society, London, UK, 504 pp.Google Scholar
Brunauer, S., Emmett, P.H. & Teller, E. (1938) Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309319.CrossRefGoogle Scholar
Campos, T.W. & Souza Santos, H. (1986) Estudo de caulins brasileiros por microscopia eletrônica de transmissão. Cerâmica, 32, 355360.Google Scholar
Cheary, R.W. & Coelho, A. (1992) A fundamental parameters approach to X-ray line-profile fitting. Journal of Applied Crystallography, 25, 109121.CrossRefGoogle Scholar
Churchman, G.J., Pasbakhsh, P. & Hillier, S. (2016) The rise and rise of halloysite. Clay Minerals, 51, 303308.CrossRefGoogle Scholar
Churchman, G.J., Whitto, J.S., Claridge, G.G.C. & Theng, B.K.G. (1984) Intercalation method using formamide for differentiating halloysite from kaolinite. Clays and Clay Minerals, 32, 241248.CrossRefGoogle Scholar
Dill, H.G., Dohrmann, R., Kaufhold, S. & Balaban, S. (2015) Kaolinization – a tool to unravel the formation and unroofing of the Pleystain pegmatite–aplite system (SE Germany). Ore Geology Reviews, 69, 3356.CrossRefGoogle Scholar
Drits, V.A., Sakharov, B.A. & Hillier, S. (2018) Phase and structural features of tubular halloysite (7 Å). Clay Minerals, 53, 691720.CrossRefGoogle Scholar
Ece, Ö.I., Schroeder, P.A., Smilley, M.J. & Wampler, J.M. (2008). Acid-sulphate hydrothermal alteration of andesitic tuffs and genesis of halloysite and alunite deposits in the Biga Peninsula, Turkey. Clay Minerals, 43, 281315.CrossRefGoogle Scholar
Erkoyun, H. & Kadіr, S. (2011) Mineralogy, micromorphology, geochemistry and genesis of a hydrothermal kaolinite deposit and altered Miocene host volcanites in the Hallaçlar area, Uşak, western Turkey. Clay Minerals, 46, 421448.CrossRefGoogle Scholar
Fentaw, H.M. & Mengistu, T. (1998) Comparison of Kombelcha and Bombowha kaolins of Ethiopia. Applied Clay Science, 13, 149164.CrossRefGoogle Scholar
Goodyear, J. & Duffin, W.J. (1961) An X-ray examination of an exceptionally well crystallized kaolinite. Mineralogical Magazine and Journal of the Mineralogical Society, 32, 902907.CrossRefGoogle Scholar
Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A. et al. (2006) Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l'Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays and Clay Minerals, 54, 761772.CrossRefGoogle Scholar
Heilbron, M., Eirado, L.G. & Almeida, J.C.H. (2016) Mapa geológico e de recursos minerais do Estado do Rio de Janeiro. 1 map: 80 cm × 120 cm. Scale 1:400,000. Programa Geologia do brasil (PGB), Mapas Geológicos Estaduais. CPRM – Serviço Geológico do Brasil, Superintendência Regional de Belo Horizonte, Belo Horizonte, Brazil.Google Scholar
Hillier, S., Brydson, R., Delbos, E., Fraser, T., Gray, N., Pendlowski, H. et al. (2016) Correlations among the mineralogical and physical properties of halloysite nanotubes (HNTs). Clay Minerals, 51, 325350.CrossRefGoogle Scholar
Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D. & Delvaux, B. (2005) Halloysite clay minerals – a review. Clay Minerals, 40, 383426.CrossRefGoogle Scholar
Kern, A. & Eysel, W. (1993) ICDD Grant-in-Aid 1993. Mineralogische-Petrographisches Institute, University of Heidelberg, Heidelberg, Germany.Google Scholar
Kildale, M.B. & Thomas, R.C. (1957) Geology of the Halloysite Deposit at the Dragon Mine. Technical report. Utah Geological Association, Salt Lake City, UT, USA.Google Scholar
Li, M.Y.H. & Zhou, M.F. (2020) The role of clay minerals in formation of the regolith-hosted heavy rare earth element deposits. American Mineralogist, 105, 92108.CrossRefGoogle Scholar
Li, M.Y.H., Zhou, M.F. & Williams-Jones, A.E. (2019) The genesis of regolith-hosted heavy rare earth element deposits: insights from the world-class Zudong deposit in Jiangxi Province, South China. Economic Geology, 114, 541568.CrossRefGoogle Scholar
Madejová, J., Gates, W.P. & Petit, S. (2017) IR spectra of clay minerals. Pp. 107149 in: Developments in Clay Science 8: Infrared and Raman Spectroscopies of Clay Minerals (Gates, W.P., Kloprogge, J.T., Madejová, J. & Bergaya, F., editors). Elsevier, Amsterdam, The Netherlands.CrossRefGoogle Scholar
Menezes, S.O. (1982) Catálogo dos principais pegmatitos do Estado do Rio de Janeiro. DRM-RJ, Niterói, Brazil, 134 pp.Google Scholar
Menezes, S.O. (1997) Principais Pegmatitos do Estado do Rio de Janeiro. Pp. 405414 in: Principais depósitos minerais do Brasil (Schobbenhaus, C., Queiroz, E.T. & Coelho, C.E.S., editors). DNPM/CPRM, Brasilia, Brazil.Google Scholar
Montes, C.R., Melfi, A.J., Carvalho, A., Vieira-Coelho, A.C. & Formoso, M.L. (2002). Genesis, mineralogy and geochemistry of kaolin deposits of the Jari River, Amapá State, Brazil. Clays and Clay Minerals, 50, 494503.CrossRefGoogle Scholar
Moore, D.M. & Reynolds, R.C. Jr (1989). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, UK, 332 pp.Google Scholar
Morris, H.T. (1964) Geology of the Eureka Quadrangle Utah and Juab Counties, Utah. Geological Survey Global Tubular Halloysite Deposits 323: Bulletin 1142-K. United States Government Printing Office, Washington, DC, USA, 29 pp.Google Scholar
Morris, H.T. (1985) Geology, ore bodies and halloysite deposits of the Tintic Mining District. Presented at: International Clay Conference, Denver, CO, USA.Google Scholar
Oliveira, M.T., Furtado, S., Formoso, M.L., Eggleton, R.A. & Dani, N. (2007) Coexistence of halloysite and kaolinite: a study on the genesis of kaolin clays of Campo Alegre Basin, Santa Catarina State, Brazil. Anais da Academia Brasileira de Ciências, 79, 665681.CrossRefGoogle Scholar
Oliveira, M.T.G., Petit, S., Grauby, O., Formoso, M.L.L. & Trescases, J.J. (1997) Characterization and distribution of halloysitic clay minerals in weathered basalts (Southern Paraná Basin, Brazil). Anais da Academia Brasileira de Ciências, 69, 179192.Google Scholar
Paiva, N.J.E. (1956) Características de alguns caulins dos arredores da cidade de São Paulo. Cerâmica, 2, 111144.Google Scholar
Parker, J.M. III (1946) Residual Kaolin Deposits of the Spruce Pine District, North Carolina. Technical report. United States Geological Survey, Raleigh, NC, USA, 45 pp.Google Scholar
Pimentel, A.C. (1966) Distribuição geográfica de caulins cauliníticos e halloysíticos do Brasil. Cerâmica, 12, 161172.Google Scholar
Prasad, M.S., Reid, K.J. & Murray, H.H. (1991) Kaolin: processing, properties and applications. Applied Clay Science, 6, 87119.CrossRefGoogle Scholar
Saddiqui, M.A. & Ahmed, Z. (2005) Mineralogy of the Swat kaolin deposits, Pakistan. Arabian Journal for Science and Engineering, 30, 195218.Google Scholar
Salgado-Campos, V.M.J., Bertolino, L.C. & Alves, O.C. (2017) Mineralogical characterization and beneficiation study of kaolin from Equador (RN) and Junco do Seridó (PB) to increase the brightness index. Cerâmica, 63, 369375.CrossRefGoogle Scholar
Salgado-Campos, V.M.J., Bertolino, L.C., Nascimento, L.C.S., Leite, J.Y.P., Brandão, V.S., Alves, O.C. & Tolentino, J. Jr (2019) Mineralogy and technological characterization of two kaolin deposits from the Borborema Pegmatite Province, northeastern Brazil. Clay Minerals, 54, 283291.CrossRefGoogle Scholar
Salgado-Campos, V.M.J., Bertolino, L.C., Silva, F.J. & Mendes, J.C. (2020) Mineralogical characterization of clay mineral assemblages from Rio de Janeiro pegmatites to identify kaolinite and/or halloysite deposits. Cerâmica, 66, 483495.CrossRefGoogle Scholar
Santos, H.A.B.J. (2017) Caracterização mineralógica do caulim proveniente de pegmatitos da região de Rio Bonito – RJ visando a identificação de halloysita. Departamento de Geociências, Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Trabalho de Conclusão de Curso, Rio de Janeiro, Brazil, 68 pp.Google Scholar
Santos, H.N., Neumann, R. & Ávilla, C.A. (2017) Mineral quantification with simultaneous refinement of Ca-Mg carbonates non-stoichiometry by X-ray diffraction, Rietveld method. Minerals, 7, 164.CrossRefGoogle Scholar
Schukow, H., Breitinger, D.K., Zeiske, T., Kubanek, F., Mohr, J. & Schwab, R.G. (1999) Localization of hydrogen and content of oxonium cations in alunite via neutron diffraction. Zeitschrift für anorganische und allgemeine Chemie, 625, 10471050.3.0.CO;2-F>CrossRefGoogle Scholar
Silva, M.R.R. & Dantas, J.R.A. (1997) Província pegmatítica da Borborema Seridó, Paraíba e Rio Grande do Norte. Pp. 441467 in: Principais Depósitos Minerais do Brasil, 1 ed., v. 4b. DNPM/CPRM, Brasília, Brazil.Google Scholar
Sing, K.S.W. (1982) Reporting physisorption data for gas/solid systems. Pure and Applied Chemistry, 54, 22012218.CrossRefGoogle Scholar
Sousa, D.J.L.D., Varajão, A.F.D.C., Yvon, J. & Da Costa, G.M. (2007) Mineralogical, micromorphological and geochemical evolution of the kaolin facies deposit from the Capim region (northern Brazil). Clay Minerals, 42, 6987.CrossRefGoogle Scholar
Souza Santos, P. & Pimentel, A.C. (1971) Estudos sobre a presença de caulinita e haloisita em caulins brasileiros. Cerâmica, 17, 258295.Google Scholar
Souza Santos, P., Souza Santos, H.L. & Brindley, G.W. (1964) Mineralogical studies of kaolinite – halloysite clays: part II. Some Brazilian kaolins. Proceedings of the International Clay Conference, 49, 15431550.Google Scholar
Souza Santos, P., Souza Santos, H.L. & Moniz, A.C. (1962) Estudos de algumas argilas e caulins de diversos Estados do Brasil. Cerâmica, 8, 221.Google Scholar
Santos P., Souza, Toledo, S.P. & Souza Santos, H. (2009) Caulins haloisíticos das Regiões Sudeste e Sul do Brasil. Cerâmica Industrial, 14, 1420Google Scholar
Technisch Physische Dienst (1966) ICDD Grant-in-Aid 1966. Technisch Physische Dienst, Delft, The Netherlands.Google Scholar
Technisch Physische Dienst (1967) ICDD Grant-in-Aid 1967. Technisch Physische Dienst, Delft, The Netherlands.Google Scholar
Toledo, S.P., Souza Santos, H. & Souza Santos, P.C. (2002) Clay mineral characterization in kaolins and ball clays from Santa Catarina. Acta Microscópica, 11, 112.Google Scholar
Tolentino, J. Jr (2019) Potencial dos depósitos de caulim halloysítico associados aos pegmatitos da região de Juiz de Fora visando o seu aproveitamento econômico. PhD thesis, Programa de Pós-Graduação em Geociências, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil, 165 pp.Google Scholar
Velde, B.B. & Meunier, A. (2008). The Origin of Clay Minerals in Soils and Weathered Rocks. Springer Science+Business Media, Berlin, Germany.CrossRefGoogle Scholar
Viani, A., Gualtieri, A.F. & Artioli, G. (2002) The nature of disorder in montmorillonite by simulation of X-ray powder patterns. American Mineralogist, 87, 966975.CrossRefGoogle Scholar
Visconti, Y.S. & Nicot, B.N.F. (1957) Mutilização do caulim tubular. Cerâmica, 3, 7280.Google Scholar
Visconti, Y.S., Nicot, B.N.F., De Andrade, E.G., Electron Micrographs & Villanova, A.C. (1956) Tubular morphology of some Brazilian kaolins. American Mineralogist, 41, 6775.Google Scholar
Warr, L.N. (2020) Recommended abbreviations for the names of clay minerals and associated phases. Clay Minerals, 55, 261264.CrossRefGoogle Scholar
Weaver, C.E. (1976) The nature of TiO2 in kaolinite. Clays and Clay Minerals, 24, 215218.CrossRefGoogle Scholar
Whitney, D.L. & Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.CrossRefGoogle Scholar
Wilson, I.R. (2004) Kaolin and halloysite deposits of China. Clay Minerals, 39, 115.CrossRefGoogle Scholar
Wilson, I.R. & Keeling, J. (2016) Global occurrence, geology and characteristics of tubular halloysite deposits. Clay Minerals, 51, 309324.CrossRefGoogle Scholar
Wilson, I.R., Santos, H.D.S. & Santos, P.D.S. (1998) Caulins brasileiros: alguns aspectos da geologia e da mineralogia. Cerâmica, 44, 118129.CrossRefGoogle Scholar
Wilson, I.R., Souza Santos, H. & Souza Santos, P. (2006) Kaolin and halloysite deposits of Brazil. Clay Minerals, 41, 697716.CrossRefGoogle Scholar
Supplementary material: File

Salgado-Campos et al. supplementary material

Salgado-Campos et al. supplementary material

Download Salgado-Campos et al. supplementary material(File)
File 1.4 MB