Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-02T21:55:54.633Z Has data issue: false hasContentIssue false

Mineralogical and geochemical characterization of palygorskite from Gabasa (NE Spain). Evidence of a detrital precursor

Published online by Cambridge University Press:  09 July 2018

A. Lopez-Galindo
Affiliation:
Instituto Andaluz de Ciencias de la Tierra. CSIC-Univ. Granada, Avda. Fuentenueva, s/n. 18002 Granada, Spain
A. Ben Aboud
Affiliation:
Instituto Andaluz de Ciencias de la Tierra. CSIC-Univ. Granada, Avda. Fuentenueva, s/n. 18002 Granada, Spain
P. Fenoll Hach-Ali
Affiliation:
Instituto Andaluz de Ciencias de la Tierra. CSIC-Univ. Granada, Avda. Fuentenueva, s/n. 18002 Granada, Spain
J. Casas Ruiz
Affiliation:
TOLSA SA. Crta. Vallecas-Mejorada del Campo. 28080 Madrid, Spain

Abstract

A mineralogical and geochemical study of the Gabasa outcrop (Huesca, NE Spain) was undertaken. It consists of Early Oligocene marly and clayey fluvial and lacustrine (playa-lake) sediments. The phases detected were quartz, amorphous silica, calcite, dolomite, palygorskite, illite, interstratified illite-smectite, Al-smectite and Mg-smectite. The palygorskite expands with ethyleneglycol. Statistical analysis of the geochemical data shows that the rare earth elements and transition trace elements are basically associated with the detrital phyllosilicates, although a considerable amount of the latter is contained in the palygorskite (ΣREE = 60–70 ppm, Cr+Co+Ni+V+Zn+Cu = 120–150 ppm), in contrast to the normally low values for neoformed minerals. This fact, together with the significant presence of Al and Fe in the palygorskite, suggest genesis involving alteration by dissolution of the 2:1 structure of the illite and/or Al-smectite, followed by re-ordering in a fibrous structure.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T.F. & Arthur, M.A. (1983) Stable isotopes of oxygen and carbon and their application to sedimentologic and palaeoenvironmental problems. In: Stable Isotopes in Sedimentary Geology. (Arthur, M.A., Anderson, T.F., Veizer, J. & Land, L.S., editors). SEPM Short Course No. I0, 151 pp.Google Scholar
Arauzo, M., Gonzalez-Lopez, J.M. & Lopez-Aguayo, F. (1989) Primeros datos sobre la mineralogfa y g6nesis del yacimiento de sepiolita de Mara (Prov. de Zaragoza). Bol. Soc. Esp. Miner. 12, 329340.Google Scholar
Arauzo, M., Gonzalez-Lopez, J.M. & Lopez-Aguayo, F. (1991) Caracterizacidn mineralógica, química y evolución geoquímica de los materiales terciarios del área del río Perejiles (Cuenca de Calatayud). Bol. Soc. Esp. Miner. 14, 211221.Google Scholar
Barahona, E. (1974) Arcillas de ladrillería de la provincia de Granada: evaluación de algunos ensayos de materias primas. PhD thesis, Univ. Granada, Spain.Google Scholar
Bonnot-Courtois, C., (1981) Géochimie des Terres Rares clans les principaus milieux de formation et de sédimentation des argiles. PhD thesis, Univ. Paris-Sud, France.Google Scholar
Brookins, D.G. (1989) Aqueous geochemistry of Rare Earth Elements. Pp. 201–225 in: Geochemistry and Mineralogy qf Rare Earth Elements (Lipin, B.R. & McKay, G.A., editors). Reviews in Mineralogy, 21, Mineralogical Society of America.Google Scholar
Cerling, T. E. (1984) The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet. Sci. Lett. 71, 229240.Google Scholar
Cerling, T. E. (1991) Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. Am. J. Sci. 291, 377400.Google Scholar
Chahi, A., Duplay, J. & Lucas, J. (1993) Analyses of palygorskites and associated clays from the Jbel Rhassoul (Morocco): Chemical characteristics and origin of formation. Clays Clay Miner. 41, 401–411.Google Scholar
Cullers, R.L., Chaudhur, S., Arnold, B., Lee, M. & Wolf, C.W. (1975) Rare earth distributions in clay minerals and in the clay-sized fraction of the Lower Permian Havensville and Eskridge shales of Kansas and Oklahoma. Geochim. Cosmochim. Acta, 39, 16911703.CrossRefGoogle Scholar
Deines, P., Langmuir, D. & Harmon, S. (1974) Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate groundwater. Geochim. Cosmochim. Acta, 38, 11471164.CrossRefGoogle Scholar
Fontes, J.C., Frltz, P. & Letolle, R. (1970) Composition isotopique, mineralogique et genèse des dolomies du Bassin de Paris. Geochim. Cosmochim. Acta, 34, 279294.CrossRefGoogle Scholar
Galan, E. & Castillo, A. (1984) Sepiolite-palygorskite in Spanish Tertiary basins: genetical patterns in continental environments. Pp. 87–124 in: Palygorskite-Sepiolite. Occurrences, Genesis and Uses (Singer, A. & Galán, E., editors). Developments in Sedimentology 37, Elsevier, Amsterdam, Holland.Google Scholar
Galan, E. & Ferrero, A. (1982) Palygorskite-sepiolite clays of Lebrija, Southern Spain. Clays Clay Miner. 3, 191-199.Google Scholar
Garljck, G.D. (1974) The stable isotopes of oxygen, carbon and hydrogen in the marine environment. Pp. 393-425 in: The Sea (Goldberg, E.D., editor), vol. 5. Wiley, New York, USA.Google Scholar
Gonzalez, I. & Galan, E. (1984) Mineralogia de los materiales Terciarios del area de Tarazona-Borja-Ablitas (Depresión del Ebro). Estudios Geol. 40, 115128.CrossRefGoogle Scholar
Gonzalez-Lopez, J.M., Fernandez-Nieto, C., LOPEZ-GALTNO0 A. & Torres-Ruíz, J. (1994) Carbonates associated with the Almazán sepiolite-palygorskite deposits (Northern Spain). Mineral. Mag. 58A, 339-340.Google Scholar
Hays, P.H. & Grossman, E.L. (1991) Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate. Geology, 19, 441–444.Google Scholar
Huertas, F., Linares, J. & Martin-Vivaldi, J.L. 0974) Minerales fibrosos de la arcilla en cuencas sedimentarias espanolas, II. Cuencas del Guadalquivir, Ebro y Depresión de Granada. lII. Consideraciones genéticas. Estudios Geol. 30, 359–366.Google Scholar
Ingles, M. & Anadon, P. (1991) Relationship of clay minerals to dcpositional environment in the nonmarine Eocene Pontils Group, SE Ebro basin (Spain). J. Sed. Pet. 6, 926939.Google Scholar
Jeffers, J.D. & Reynolds, R.C. (1987) Expandable palygorskite from the Cretaceous-Tertiary boundary, Mangyshlak Peninsula, USSR. Clays Clay Miner. 6, 473476.Google Scholar
Jones, B.F. & Galan, E. (1988) Sepiolite and palygorskite. Pp. 631–674 in: Hydrous Phyllosilicates (exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19. Mineralogical Society of America.Google Scholar
Lopez Galindo, A., Torres Ruiz, J. & Gonzalez Lopez, M. (1994) Método de cuantificación mineralógica en depósitos con sepiolita-paligorskita. Bol. Soc. Esp. Miner. 17-1, 12.Google Scholar
Martn De Vidales, J.L., Jimenez Ballesta, g. & Guerra, A. (1987) Pedogenetic significance of palygorskite in paleosols developed on terraces of the River Tajo (Spain). Pp. 535–548 in: Geochemistry and Mineral Formation in the Earth Sulface (Rodríguez-Clemente, R. & Tardy, Y., editors). CSIC, Madrid, Spain.Google Scholar
Martin De Vidales, J.L., Pozo, M., Medina, J.A. & Leguey, S. (1988) Formación de sepiolita-paligorskita en litofacies lutftico-carbonáticas en el sector de Borox-Esquivias (Cuenca de Madrid). Estudios Geol. 44, 718.Google Scholar
Martin-Pozas, J.M., Sanchez-Camazano, M. & Martin-Vivaldi, J.M. (1981) La palygorskita de Tabladillo (Guadalajara). Bol. Geol. Miner. XCII-V, 395-402.Google Scholar
Mclenan, S.M. (1989) Rare Earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Pp. 169–200 in: Geochemistry and Mineralogy (if Rare Earth Elements (Lipin, B.R. & McKay, G.A., editors). Reviews in Mineralogy, 21. Mineralogical Society of America.Google Scholar
Millot, G., Nahon, D., Paquet, U., Ruellan, A. & Tardy, Y. (1977) L'epigénie calcaire des roches silicatées dans les encroutements carbonatés en pays subaride, Antiatlas, Maroc. Sci. Geol. Bull. 30, 3, 129152.CrossRefGoogle Scholar
Riba, O. , Puigdefabregas, C., Soler, M., Maldonado, A., Marti, C. & Garrido, A. (1980) Mapa y memoria explicativa, escala 1:200000, de Huesca. IGME (Madrid).Google Scholar
Riba, O., Reguant, S. & Villena, J. (1983) Ensayo de sfntesis estratigráfica y evolutiva de la cuenca terciaria del Ebro. Pp. 131–159 in: Libro Jubilar J.M. RiDs (Comba, J.A., editor). IGME (Madrid), Spain.Google Scholar
Ronov, A.B., Balashov, A., Girin, Y.P., Bratishko, R.KH. & Kazarov, G.A. (1974) Regularities of rare-earth element distribution in the sedimentary shelf and in the crust of the earth. Sedimentology, 21, 171193.Google Scholar
Sanchez San Roman, F.J. & Blanco Sanchez, J.A. (1986) Formación de paligorskita asociada al flujo regional de las aguas subterráneas del borde SO de la Cuenca del Duero. Estudios Geol. 42, 321330.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition form X-ray and chemical data for the Pierre Shale. U.S. Geol. Surv. Prof. Paper 391-C, 31 pp.Google Scholar
Singer, A. (1984) Pedogenic palygorskite in the arid environment. Pp. 169–177 in: Palygorskite- Sepiolite. Occurrences, Genesis and Uses (Singer, A. & Galán, E., editors). Developments in Sedimentology 37, Elsevier, Amsterdam, Holland.Google Scholar
Suarez, M., Armenteros, I., Navarrete, J. & Martinpozas, J.M. (1989) E1 yacimiento de palygorskita de Bercimuel, génesis y propiedades tecnológicas. Studia Geol. (Salamanca) 26, 2737.Google Scholar
Suarez, M., Robert, M., Elsass, F. & Martin-Pozas, J.M. (1994) Evidence of a precursor in the neoformation of palygorskite. New data by analytical electron microscopy. Clay Miner. 29, 255264.CrossRefGoogle Scholar
Torres-Ruiz, J., Lopez-Galindo, A., Gonzalez-Lopez, J.M. & Delgado, A. (1994) Geochemistry of Spanish sepiolite-palygorskite deposits: genetic considerations based on trace elements and isotopes. Chem. Geol. 112, 221245.Google Scholar
Turner, D.R. & Whitfielo, M. (1979) Control of seawater composition. Nature, 281, 468–469.Google Scholar
Velde, B. (1985) Clay Mineral A Physico-Chemical Explanation of their Occurrences. Developments in Sedimentology, 40. Elsevier, Amsterdam, Holland.Google Scholar
Walters, L.J., Claypool, G.G. & Choquette, P.W. (1972) Reaction rates and 18O variation for the carbonate-phosphoric acid preparation method. Geochim. Cosmochim. Acta, 36, 129–140.Google Scholar