Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T03:47:28.607Z Has data issue: false hasContentIssue false

Microstructural investigation of calcium montmorillonite

Published online by Cambridge University Press:  09 July 2018

M. Matusewicz*
Affiliation:
VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland
K. Pirkkalainen
Affiliation:
Department of Physics, University of Helsinki, P.O. Box 64, FI-00014, University of Helsinki, Finland
V. Liljeström
Affiliation:
Department of Physics, University of Helsinki, P.O. Box 64, FI-00014, University of Helsinki, Finland
J. -P. Suuronen
Affiliation:
Department of Physics, University of Helsinki, P.O. Box 64, FI-00014, University of Helsinki, Finland
A. Root
Affiliation:
MagSol, Tuhkanummenkuja 2, FI-00970 Helsinki, Finland
A. Muurinen
Affiliation:
VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland
R. Serimaa
Affiliation:
Department of Physics, University of Helsinki, P.O. Box 64, FI-00014, University of Helsinki, Finland
M. Olin
Affiliation:
VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bentonite clay is planned to form a part of deep-geological repositories of spent nuclear fuel in several countries. The extremely long operation time of the repository requires an indepth understanding of the structure and properties of used materials. In this work the microstructure of a simplified system of Ca-montmorillonite is investigated using a set of complementary methods: X-ray diffraction, small angle X-ray scattering, nuclear magnetic resonance, transmission electron microscopy and ion exclusion. The paper presents experimental results obtained from compacted, water saturated samples in the dry density range 0.6–1.5 g/cm3. It can be observed that different methods yield similar quantification of water present in the interlamellar space. Combined results support the multiple porosity concept of the bentonite structure.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2013 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

References

Birgersson, M. & Karnland, O. (2009) Ion equilibrium between montmorillonite interlayer space and an external solution – consequences for diffusional transport. Geochimica et Cosmochimica Acta, 73, 1908–1923.10.1016/j.gca.2008.11.027Google Scholar
Bradbury, M.H. & Baeyens, B. (2002) Porewater chemistry in compacted re-saturated MX-80 bentonite: Physico-chemical characterisation and geochemical modelling. PSI Bericht Nr. 02-10. Paul Sherrer Institut, Villigen, Switzerland.Google Scholar
Carlsson, T., Muurinen, A., Matusewicz, M. & Root, A. (2012) Porewater in compacted water-saturated MX-80 bentonite. Pp. 397402 in: MRS Proceedings (Carranza, R.M., Duffo, G.S. & Rebak, R.B., editors). Cambridge University Press. New York. Vol. 1475. ISBN 978-1-60511-452-1.Google Scholar
Eslinger, E. & Peaver, D. (1988) Clay Minerals for Petroleum Geologists and Engineers. Illustrated edition. SEPM, Tulsa, USA.10.2110/scn.88.22Google Scholar
Ferrage, E., Lanson, B., Malikova, N., Plançon, A., Sakharov, B.A. & Drits, V.A. (2005) New insights on the distribution of interlayer water in bi-hydrated smectite from X-ray diffraction profile modeling of 00l reflections. Chemistry of Materials, 17, 3499–3512.10.1021/cm047995vCrossRefGoogle Scholar
Ferrage, E., Lanson, B., Michot, L.J. & Robert, J. (2010) Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. Part 1. Results from X-ray diffraction profile modeling. The Journal of Physical Chemistry C, 114, 4515–4526.10.1021/jp909860pGoogle Scholar
Glatter, O. & Kratky, O. (1982) Small Angle X-ray Scattering. London: Academic Press.Google Scholar
Hermes, H.E., Frielinghaus, H., Pyckhout-Hintzen, W. & Richter, D. (2006) Quantitative analysis of small angle neutron scattering data from montmorillonite dispersions. Polymer, 47, 2147–2155.10.1016/j.polymer.2006.01.059CrossRefGoogle Scholar
Holmboe, M., Wold, S. & Jonsson, M. (2012) Porosity investigation of compacted bentonite using XRD profile modeling. Journal of Contaminant Hydrology, 128, 19–32.10.1016/j.jconhyd.2011.10.005CrossRefGoogle ScholarPubMed
Holzer, L., Münch, B., Rizzi, M., Wepf, R., Marschall, P. & Graule, T. (2010) 3D-microstructure analysis of hydrated bentonite with cryo-stabilized pore water. Applied Clay Science, 47, 330–342.10.1016/j.clay.2009.11.045CrossRefGoogle Scholar
Huang, T.C., Toraya, H., Blanton, T.N. & Wu, Y. (1993) X-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standard. Journal of Applied Crystallography, 26, 180–184.10.1107/S0021889892009762CrossRefGoogle Scholar
Kozaki, T., Inada, K., Sato, S. & Ohashi, H. (2001) Diffusion mechanism of chloride ions in sodium montmorillonite. Journal of Contaminant Hydrology, 47, 159–170.10.1016/S0169-7722(00)00146-7CrossRefGoogle ScholarPubMed
Moore, D.M. & Reynolds, R.C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press.Google Scholar
Muurinen, A. (2009) Studies on the Chemical Conditions and Microstructure in the Reference Bentonites of Alternative Buffer Materials Project (ABM) in Äspö. 2009-42. Posiva OY, Eurajoki. 46 pp.Google Scholar
Ohkubo, T., Kikuchi, H. & Yamaguchi, M. (2008) An approach of NMR relaxometry for understanding water in saturated compacted bentonite. Physics and Chemistry of the Earth, Parts A/B/C, 33, Supplement 1, S169–S176.Google Scholar
Pizzey, C., Klein, S., Leach, E., Van Duijneveldt, J.S. & Richardson, R.M. (2004) Suspensions of colloidal plates in a nematic liquid crystal: a small angle x-ray scattering study. Journal of Physics: Condensed Matter, 16, 2479–2496.Google Scholar
Plançon, A. (2002) New modeling of X-ray diffraction by disordered lamellar structures, such as phyllosilicates. American Mineralogist, 87, 1672–1677.10.2138/am-2002-11-1216Google Scholar
Posiva (2010) Nuclear Waste Management at Olkiluoto and Loviisa Power Plants: Review of Current Status and Future Plans for 2010-2012. TKS-2009, Posiva OY, Eurajoki.Google Scholar
Santyr, G.E., Henkelman, R.M. & Bronskill, M.J. (1988) Variation in measured transverse relaxation in tissue resulting from spin locking with the CPMG sequence. Journal of Magnetic Resonance, 79, 28–44.Google Scholar
Savage, D. (2012) Prospects for Coupled Modelling. STUK-TR 13, STUK Radiation and Nuclear Safety Authority, Helsinki, Finland.Google Scholar
Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675.10.1038/nmeth.2089CrossRefGoogle ScholarPubMed
Segad, M., Hanski, S., Olsson, U., Ruokolainen, J., Åkesson, T. & Jönsson, B. (2012) Microstructural and swelling properties of Ca and Na montmorillonite: (in situ) observations with Cryo-TEM and SAXS. The Journal of Physical Chemistry C, 116, 7596–7601.10.1021/jp300531yGoogle Scholar
Sposito, G. & Prost, R. (1982) Structure of water adsorbed on smectites. Chemical Reviews, 82, 553–573.10.1021/cr00052a001CrossRefGoogle Scholar
Studer, D., Graber, W., Al-Amoudi, A. & Eggli, P. (2001) A new approach for cryofixation by high-pressure freezing. Journal of Microscopy, 203, 285–294.10.1046/j.1365-2818.2001.00919.xGoogle Scholar
Tributh, H. & Lagaly, G. (1986) Aufbereitung und Identifizierung von Boden-und Lagerstättentonen. I. Aufbereitung der Proben im Labor. GITFachzeitschrift für das Laboratorium, 30, 524–529.Google Scholar
Van Duijneveldt, J.S., Klein, S., Leach, E., Pizzey, C. & Richardson, R.M. (2005) Large scale structures in liquid crystal/clay colloids. Journal of Physics: Condensed Matter, 17, 2255.Google Scholar
Viani, A., Gualtieri, A.F. & Artioli, G. (2002) The nature of disorder in montmorillonite by simulation of Xray powder patterns. American Mineralogist, 87, 966–975.10.2138/am-2002-0720CrossRefGoogle Scholar
Williamson, G.K. & Hall, W.H. (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1, 22–31.10.1016/0001-6160(53)90006-6CrossRefGoogle Scholar