Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-07T18:45:47.053Z Has data issue: false hasContentIssue false

Micromilieu-controlled glauconitization in fecal pellets at Oker (Central Germany)

Published online by Cambridge University Press:  09 July 2018

A. Baldermann*
Affiliation:
Department of Geography and Geology, University of Greifswald, Friedrich-Ludwig-Jahnstraβe 17a, 17487 Greifswald, Germany
G. H. Grathoff
Affiliation:
Department of Geography and Geology, University of Greifswald, Friedrich-Ludwig-Jahnstraβe 17a, 17487 Greifswald, Germany
C. Nickel
Affiliation:
Department of Geography and Geology, University of Greifswald, Friedrich-Ludwig-Jahnstraβe 17a, 17487 Greifswald, Germany
*

Abstract

Although numerous models for the formation of glauconite have been presented, the precise process and micro-environment of glauconitization are still poorly constrained. We characterize the special micromilieu of glauconitization developed during early diagenesis and present a model for glauconite formation in fecal pellets.

Glauconitization at Oker (Central Germany) occurred predominantly in fecal pellets deposited in a shallow marine-lagoonal environment during the Kimmeridgian. Within the fecal pellets, rapid oxidation of organic matter provides the post-depositional, physicochemical conditions favourable for glauconitization. Replacements of matrix calcite, dissolution of detrital quartz, K-feldspar, and clay minerals, and Fe redox reactions were observed within the early micro-environment, followed by the precipitation of euhedral pyrite, matrix-replacive dolomite, and megaquartz accompanied by I-S formation as thin section analyses and SEM observations show. Carbonate geochemical compositions based on ICP-OES and stable oxygen and carbon isotope signatures demonstrate that glauconite formation started in a suboxic environment at a pH of 7–8 and a temperature of 22±3°C to 37±2°C at maximum.

TEM-EDX-SAED and XRD analyses on separated glauconite fecal pellets and on the <2 μm clay mineral fraction reveal the predominance of authigenic 1Md-glauconite, 1Md-glauconite-smectite, and 1Mdcis-vacant I-S, besides accessory detrital 2M1-illite and montmorillonite. Kinetic modelling of the glauconite (93–94% Fe-illite layers and 6–7% Fe-smectite layers, R3) and of I-S (66–68% Al-illite layers and 32–34% Al-smectite layers, R1) leads us to conclude that the I-S formed solely by slow burial diagenesis, whereas the glauconite formed close to the seafloor, suggesting significantly faster kinetics of the glauconitization reaction compared with smectite-illitization related to burial diagenesis. Thermodynamically, the substitution of octahedral Al3+ for Fe3+ and Mg2+ during the Fe-Mg-smectite to glauconite reaction via the formation of glauconite-smectite mixed-layered clay minerals may have resulted in a higher reaction rate for this low-temperature glauconitization process.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current Address: Institute of Applied Geosciences, Graz University of Technology, Austria

Main authors

References

Anderson, T.F. & Arthur, M.A. (1983) Stable isotopes of oxygen and carbon and their application to sedimentologic and palaeoenvironmental problems. Pp. 1–151 in: Stable Isotopes in Sedimentary Geology (Arthur, M.A., Anderson, T.F., Kaplan, I.R., Veizer, J. & Land, L.S., editors). SEPM Short Course, Tulsa, Oklahoma, USA.Google Scholar
Bailey, S.W., Alietti, A., Brindley, G.W., Formosa, M.L.L., Jasmund, K., Konta, J., MacKenzie, R.C., Nagasawa, K., Raussell-Colom, R.A. & Zvyagin, B.B. (1980) Summary of the recommendations of the AIPEA nomenclature committee. Clays and Clay Minerals, 28, 73–78.Google Scholar
Baldermann, A. (2010) Geochemie und Mineralogie der Smektit-Illitisierung in Glaukoniten des Nördlichen Harzvorlandes. B.Sc. thesis, University of Greifswald, Germany.Google Scholar
Brown, G.C, Hughes, D.J. & Esson, J. (1973) New XRF data retrieval techniques and their application to USGS standard rocks. Chemical Geology, 11, 223–229.CrossRefGoogle Scholar
Buatier, M., Honnorez, J. & Ehret, G. (1989) Fe-smectiteglauconite transition in hydrothermal clays from the Galapagos Spreading Center. Clays and Clay Minerals, 37, 532–541.CrossRefGoogle Scholar
Burst, J.F. (1958a) Glauconite pellets: their mineral nature and applications to stratigraphic interpretations. American Association of Petroleum Geologists Bulletin, 42, 310–327.Google Scholar
Burst, J.F. (1958b) Mineral heterogeneity in glauconite pellets. American Mineralogist, 43, 481–49.Google Scholar
Charpentier, D., Buatier, M.D., Jacquot, E., Gaudin, A. & Wheat, C.G. (2011) Conditions and mechanism for the formation of iron-rich montmorillonite in deep sea sediments (Costa Rica margin): Coupling highresolution mineralogical characterization and geochemical modeling. Geochimica et Cosmochimica Acta, 75, 1397–1410.CrossRefGoogle Scholar
Chermak, J.A. & Rimstidt, J.D. (1989) Estimating the thermodynamic properties (ΔGf and ΔHf) of silicate minerals at 298 K from the sum of polyhedral contributions. American Mineralogist, 74, 1023–1031.Google Scholar
Colombié, C., Lécuyer, C. & Strasser, A. (2011) Carbonand oxygen-isotope records of palaeoenvironmental and carbonate production changes in shallow-marine carbonates (Kimmeridgian, Swiss Jura). Geological Magazine, 148, 133–153.CrossRefGoogle Scholar
Craig, H. (1965) The measurement of oxygen isotope palaeotemperatures. Pp. 161–182 in: Stable Isotopes in Oceanographic Studies and Palaeotemperatures (Tongiorgi, E., editor). Consiglio Nazionale delle Richerche. Labortorio di Geologia Nucleare, Pisa, Italy.Google Scholar
Cuadros, J., Dekov, V.M., Arroyo, X. & Nieto, F. (2011) Smectite formation in submarine hydrothermal sediments: samples from the HMS Challenger Expedition (1872–1776). Clays and Clay Minerals, 59, 147–164.CrossRefGoogle Scholar
El Albani, A., Meunier, A. & Fursich, F. (2005) Unusual occurrence of glauconite in a shallow marine lagoonal environment (Lower Cretaceous, northern Aquitaine Basin, SW France). Terra Nova, 17, 537–544.CrossRefGoogle Scholar
Elliott, W.C & Matisoff, G. (1996) Evolution of kinetic models for the smectite to illite transformation. Clays and Clay Minerals, 44, 77–87.CrossRefGoogle Scholar
Epstein, S., Buchsbaum, R., Lowenstam, H.A. & Urey, H.C. (1953) Revised carbonate water isotopic temperature scale. Geological Society America Bulletin, 64, 1315–1326.CrossRefGoogle Scholar
Fischer, R. (1991) Die Oberjura-Schichtfolge vom Langenberg bei Oker. Arbeitskreis Paläontologie Hannover, 19, 21–36.Google Scholar
Friedman, I. & O’Neil, J.R. (1977) Compilation of stable isotope fractionation factors of geochemical interest. Chapter KK in: Data of Geochemistry (Fleischer, M., editor). Geological Survey Professional. Paper, USGS, Washington, USA.Google Scholar
Galliher, E.W. (1935) Glauconite genesis. Geological Society of America Bulletin, 46, 1351–1356.CrossRefGoogle Scholar
Gaudin, A., Buatier, M.D., Beaufort, D., Petit, S., Grauby, O. & Decareau, A. (2005) Characterization and origin of Fe3+-montmorillonite in deep water calcareous sediments (Pacific Ocean, Costa Rica margin). Clays and Clay Minerals, 53, 452–465.CrossRefGoogle Scholar
Giresse, P. & Wiewióra, A. (2001) Stratigraphic condensed deposition and diagenetic evolution of green clay minerals in deep water sediments on the Ivory Coast-Ghana Ridge. Marine Geology, 179, 51–70.CrossRefGoogle Scholar
Giresse, P., Wiewióra, A. & Grabska, D. (2004) Glauconitization processes in the northwestern Mediterranean (Gulf of Lions). Clay Minerals, 39, 57–73.CrossRefGoogle Scholar
Grathoff, G.H., Moore, D.M., Hay, R.L. & Wemmer, K. (2000) Origin of illite in the lower Paleozoic of the Illinois basin: Evidence for brine migrations. Geological Society of America Bulletin, 113, 1092–1104.Google Scholar
Guimaraes, E.M., Velde, B., Hillier, S. & Nicot, E. (2000) Diagenetic/anchimetamorphic changes on the Proterozoic glauconite and glaucony from the Paranoa group, mid-western Brazil. Revista Brasileira de Geociências, 30, 363–366.CrossRefGoogle Scholar
Hanor, J.S. (1994) Physical and chemical controls on the composition of waters in sedimentary basins. Marine and Petroleum Geology, 11, 31–45.CrossRefGoogle Scholar
Harder, H. (1980) Synthesis of glauconite at surface temperatures. Clays and Clay Minerals, 28, 217–222.CrossRefGoogle Scholar
Hardie, L.A. (1996) Secular variation in seawater chemistry: An explanation for the coupled variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology, 24, 279–283.2.3.CO;2>CrossRefGoogle Scholar
Holland, H.D., Horita, J. & Seyfried, W.E. (1996) On the secular variations in the composition of Phanerozoic marine potash evaporites. Geology, 24, 993–996.2.3.CO;2>CrossRefGoogle Scholar
Horita, J., Zimmermann, H. & Holland, H.D. (2002) Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporates. Geochimica et Cosmochimica Acta, 66, 3733–3756.CrossRefGoogle Scholar
Hower, J. (1961) Some factors concerning the nature and origin of glauconite. American Mineralogist, 46, 313–334.Google Scholar
Hower, J., Eslinger, E.V., Hower, M.E. & Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725–737.2.0.CO;2>CrossRefGoogle Scholar
Huggett, J.M. & Cuadros, J. (2010) Glauconite formation in lacustrine/palaeosol sediments, Isle of Wight (Hampshire Basin), UK. Clay Minerals, 45, 35–49.CrossRefGoogle Scholar
Husinec, A. & Read, J.F. (2010) Sequence Stratigraphy, Carbon Isotopic Signature, and Dolomitization of a Late Jurassic Greenhouse Platform, Croatia. Search and Discovery Article #50345, AAPG Annual Convention and Exhibition, 1–21.Google Scholar
Jaisi, D.P., Eberl, D.D., Dong, H. & Kim, J. (2011) The formation of illite from nontronite by mesophilic and thermophilic bacterial reduction. Clays and Clay Minerals, 59, 21–33.CrossRefGoogle Scholar
Kohler, E.E. & Köster, H.M. (1976) Zur Mineralogie, Kristallchemie und Geochemie kretazischer Glaukonite. Clay Minerals, 11, 273–302.CrossRefGoogle Scholar
Longuépée, H. & Cousineau, P.A. (2006) Constraints on the genesis of ferrian illite and aluminum-rich glauconite: potential impact on sedimentology and isotopic studies. The Canadian Mineralogist, 44, 967–98.CrossRefGoogle Scholar
MacKenzie, F.T. (2005) Sediments, Diagenesis, and Sedimentary Rocks, 7: Treatise on Geochemistry, 446 pp. Elsevier Science & Technology, USA.Google Scholar
McKenzie, J.A. (1981) Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, U.A.E.: a stable isotope study. Journal of Geology, 89, 185–198.CrossRefGoogle Scholar
Mazur, S. & Scheck-Wenderoth, M. (2005) Constraints on the tectonic evolution of the Central European Basin System revealed by seismic reflection profiles from Northern Germany. Netherlands Journal of Geosciences, 84, 389–401.CrossRefGoogle Scholar
Meunier, A. & El Albani, A.E. (2007) The glauconite–Fe-illite–Fe-smectite problem: a critical review. Terra Nova, 19, 95–104.CrossRefGoogle Scholar
Moore, D. & Reynolds, R.C. Jr (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 378 pp. Oxford University Press, USA.Google Scholar
Mudroch, A. (2001) Fischzähne aus dem Oberjura Nordwesteuropas - Systematik, Biogeochemie und Palökologie. Ph.D. thesis, University of Hannover, Germany.Google Scholar
Nollet, S., Hilgers, C. & Urai, J. (2005) Sealing of fluid pathways in overpressure cells: a case study from the Buntsandstein in the Lower Saxony Basin (NW Germany). International Journal of Earth Science, 94, 1039–1055.CrossRefGoogle Scholar
Odin, G.S. (1982) How to measure glaucony ages. Pp. 387–403 in: Numerical Dating in Stratigraphy (Odin, G.S., editor). John Wiley & Sons, Chichester, West Sussex, UK.Google Scholar
Odin, G.S. (1988) Green Marine Clays, 445 pp. Elsevier, Amsterdam.Google Scholar
Odin, G.S. & Matter, A. (1981) De glauconiarum origine. Sedimentology, 28, 611–641.CrossRefGoogle Scholar
Odom, E. (1976) Microstructure, mineralogy and chemistry of Cambrian glauconite pellets and glauconite, central U.S.A. Clays and Clay Minerals, 24, 232–238.CrossRefGoogle Scholar
Ojakangas, R.W. & Keller, W.D. (1964) Glauconitization of rhyolite sand grains. Journal of Sedimentary Petrology, 34, 84–90.Google Scholar
Pevear, D.R. (1999) Illite and hydrocarbon exploration. Proceedings of the National Academy of Sciences of the United States of America, 96, 3440–3446.Google ScholarPubMed
Pilskaln, C.H. & Honjo, S. (1987) The fecal pellet fraction of biogeochemical particle fluxes to the deep sea. Global Biogeochemical Cycles, 1, 31–48.CrossRefGoogle Scholar
Price, G.D. & Sellwood, B.W. (1994) Palaeotemperatures indicated by Upper Jurassic (Kimmeridgian-Tithonian) fossils from Mallorca determined by oxygen isotope composition. Palaeogeography, Palaeoclimatology, Palaeoecology, 110, 1–10.CrossRefGoogle Scholar
Pryor, W.A. (1975) Biogenic sedimentation and alteration of argillaceous sediments in shallow marine environments. Geological Society of America Bulletin, 86, 1244–1254.2.0.CO;2>CrossRefGoogle Scholar
Pytte, A.M. & Reynolds, R.C. (1988) The thermal transformation of smectite to illite. Pp. 133–140 in: Thermal History of Sedimentary Basins (N.D., Naeser and T.H., McCulloh, editors). Springer, USA.Google Scholar
Raiswell, R. (2011) Iron transport from the continents to the open oceans: The aging-rejuvenation cycle. Elements, 7, 101–106.CrossRefGoogle Scholar
Rameil, N. (2008) Early diagenetic dolomitization and dedolomitization of Late Jurassic and earliest Cretaceous platform carbonates: A case study from the Jura Mountains (NW Switzerland, E France). Sedimentary Geology, 212, 70–85.CrossRefGoogle Scholar
Rao, V.P., Thamban, M. & Lamboy, M. (1995) Verdine and glaucony facies from surface sediments of the eastern continental margin of India. Marine Geology, 127, 105–113.CrossRefGoogle Scholar
Reinhold, C. (1998) Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian Alb, southern Germany. Sedimentary Geology, 121, 71–95.CrossRefGoogle Scholar
Reitsema, R.H. (1980) Dolomite and nahcolite formation in organic rich sediments: isotopically heavy carbonates. Geochimica et Cosmochimica Acta, 44, 2045–2049.CrossRefGoogle Scholar
Schulz, H.D. & Zabel, M. (2006) Marine Geochemistry, 574 pp. Springer, Berlin.CrossRefGoogle Scholar
Środoń, J. & Eberl, D.D. (1984) Illite. Pp. 495–544 in: Micas (Bailey, S.W., editor). Reviews in Mineralogy, Mineralogical Society of America, USA.Google Scholar
Stille, P. & Clauer, N. (1994) The process of glauconitization: chemical and isotopic evidence. Contributions to Mineralogy and Petrology, 117, 253–262.CrossRefGoogle Scholar
Strickler, M.E. & Ferrell, R.E. Jr (1990) Fe substitution for Al in glauconite with increasing diagenesis in the first Wilcox sandstone (Lower Eocene), Livingston Parish, Lousiana. Clays and Clay Minerals, 38, 69–76.CrossRefGoogle Scholar
Tucker, M.E. & Wright, V.P. (1990) Carbonate Sedimentology, 496 pp. Blackwell Science Inc., Oxford.CrossRefGoogle Scholar
Turekian, K.K. (1968) Oceans, 120 pp. Prentice Hall, Englewood Cliffs, New York, USA.Google Scholar
Van der Lubbe, T., Richter, U. & Knötschke, N. (2009) Velociraptorine dromaeosaurid teeth from the Kimmeridgian (Late Jurassic) of Germany. Acta Palaeontologica Polonica, 54, 401–408.Google Scholar
Veizer, J. & MacKenzie, F.T. (2005) Evolution of sedimentary rocks. Pp. 369–704 in: Sediments, Diagenesis, and Sedimentary Rocks (MacKenzie, F.T., editor). Elsevier Science & Technology, USA.Google Scholar
Voigt, T., von Eynatten, H. & Franzke, H.-J. (2004) Late Cretaceous unconformities in the Subhercynian Cretaceous Basin (Germany). Acta Geologica Polonica, 54, 673–694.Google Scholar
Warren, J. (2000) Dolomite: occurrence, evolution and economically important associations. Earth Science Reviews, 52, 1–81.CrossRefGoogle Scholar
Weber, J.N. & Smith, F.G. (1961) Rapid determination of calcite-dolomite ratios in sedimentary rocks. Journal of Sedimentary Petrology, 31, 130–132.CrossRefGoogle Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals, 213 pp. Elsevier, Amsterdam, London, New York.Google Scholar