Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T16:05:21.087Z Has data issue: false hasContentIssue false

Methods of analysing morphology of kaolinites: relations between crystallographic and morphological properties

Published online by Cambridge University Press:  09 July 2018

J.M. Cases
Affiliation:
Centre de Recherche sur la Valorisation des Minerais de l'Ecole Nationale Supérieure de Géologie et Laboratoire Associé du CNRS no.235 “Minéralurgie”, B.P. 40, 54501 Vandoeuvre Cédex
P. Cunin
Affiliation:
Talcs de Luzenac S.A., 09250 Luzenac
Y. Grillett
Affiliation:
Centre de Thermodynamique et de Microcalorimétrie du CNRS, 26 rue du 141 ème R.I.A., 13003 Marseille Cédex, France
C. Poinsignon
Affiliation:
Centre de Recherche sur la Valorisation des Minerais de l'Ecole Nationale Supérieure de Géologie et Laboratoire Associé du CNRS no.235 “Minéralurgie”, B.P. 40, 54501 Vandoeuvre Cédex
J. Yvon
Affiliation:
Centre de Recherche sur la Valorisation des Minerais de l'Ecole Nationale Supérieure de Géologie et Laboratoire Associé du CNRS no.235 “Minéralurgie”, B.P. 40, 54501 Vandoeuvre Cédex

Abstract

A study was made of the extent to which the lateral surfaces contribute to the surface area of five kaolinites of different crystallinities. Methods used included the low-temperature adsorption of N2 and Ar as measured by a volumetric technique coupled with microcalorimetry, the interpretation of the adsorption isotherms of alkyldodecylammonium ions, particle-size distribution curves, and shadowed transmission electron microscopy. With the exception of surfactant adsorption and adsorption calorimetry using Ar, these methods gave different and debatable results. For instance, specific lateral surface area values expressed as a percentage of total specific surface area varied from 17·0 to 40·4% for the most crystalline sample and from 12·0 to 54·3% for the least crystalline. It is shown that the decrease in crystallinity of samples is accompanied by a reduction in crystallite size from 0·8 to 0·08 µm and a decrease in lateral surface area from 34·0 to 12·0%.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blanc, R. & Escoubes, M. (1975) Adsorption d'eau sur la kaolinite. Influence de la nature des sites actifs. Thermodynamica Acta 2, 115123.CrossRefGoogle Scholar
Carruthers, J.D., Paynes, D.A., Sing, K.S. & Stryker, J.L. (1971) Specific and non specific interactions in the adsorption of argon, nitrogen, and water vapor on oxides. J. Colloid Interface Sci. 36, 205216.CrossRefGoogle Scholar
Cases, J.M. & Mutaftschiev, B. (1968) Adsorption et condensation des chlorhydrates d'alkylamine à l'interface solide-liquide. Surface Sci. 9, 5772.CrossRefGoogle Scholar
Cases, J.M. & Sauret, G. (1975) Valorisation des kaolins des Charentes. Aptitude au couchage du papier. Compte rendu de fin de contrat D.G.R.S.T. No. 73.7.1807. 162 pp, available from Centre National de la Recherche Scientifiques, Paris.Google Scholar
Cases, J.M., Goujon, G. & Smani, S. (1975) Adsorption of n-alkylamine chlorides on heterogeneous surfaces. AIChE Symp. Ser. 71, 100109.Google Scholar
Cases, J.M. (1979) Adsorption des tensio-actifs à l'interface solide-liquide. Tbermodynamique et influence de l'hétérogénéité des adsorbants. Bull. Minér. 102, 684707.CrossRefGoogle Scholar
Cases, J.M., Liétard, O., Yvon, J. & Delon, J.F. (1982a) Etude des proprietes cristallochimiques, morphologiques, superficielles, de kaolinites désordonnées. Bull. Minéral. 105, 439455.CrossRefGoogle Scholar
Cases, J.M., Canet, D., Doerler, N. & Poirier, J.E. (1982b) Adsorption des tensio-actifs ioniques à chaîne alkyle à l'interface solide-solution aqueuse. Pp. 2154 in Adsorption at the Gas-Solid and Liquid-Solid Interface (Rouquerol, J., Sing, K. S. W., editors). Studies in Surface Science and Catalysis, 10. Elsevier, Amsterdam.Google Scholar
Conley, R.F. & Lloyd, M.D. (1971) Adsorption studies on kaolinites. II. Absorption of amines. Clays Clay Miner. 19, 273282.CrossRefGoogle Scholar
Cunin, P., Degoul, P. & Cases, J.M. (1976) Analyse qualitative et quantitative des réactifs de flottation par chromatographic en phase gazeuse. Cas des solutions aqueuses de chlorure d'alkylamine. Analusis 4, 463470.Google Scholar
Cunin, P. (1977) Adsorption des ions alkyldodécylammonium sur les kaolins. Cristallinitd et hétérogénéité superficielle. Thèse de Doctorat d'Etat, Nancy, 158 pp.Google Scholar
Fripiat, J.J., Tchoubar, C., Cruz, M. & Plançon, A. (1980) Valorisation des kaolins: Relations des propridtds structurales et physicochimiques avec l'aptitude au couchage papier. Contrat D.G.R.S.T. 76.7.0619, 97 pp. available from Centre National de la Recherche Scientifiques, Paris.Google Scholar
Frohnsdorff, G.J.C. & Kington, G.L. (1959) Hydrogen bonding of surface hydroxyl groups to physically adsorbed molecules. Trans. Faraday Soc. 55, 11731184.CrossRefGoogle Scholar
Goujon, G., Cases, J.M. & Mutaftschiev, B. (1976) On the absorption of n-dodecylammonium chloride on the surface of synthetic calcite. J. Colloid lnterface Sci. 56, 587595.CrossRefGoogle Scholar
Grim, R.E. (1953) Clay Mineralogy. McGraw-Hill Book Co. Inc., New York.CrossRefGoogle Scholar
Guinier, A. (1956) Théorie et Technique de la Radiocristallographie. Dunod, Paris.Google Scholar
Liiétard, O. (1977) Contribution à l'édtude des propriétés physicochimiques, cristallochimiques et morphologiques des kaolins. Thèse de Doctorat d'Etat, Nancy, 345 pp.Google Scholar
Liétard, O., Yvon, J., Delon, J.F., Mercier, R. & Cases, J.M. (1980) Determination of the basal and lateral surfaces of kaolins. Variation with types of crystalline defects. Pp. 558582 in: Fine Particle Processing (Somasundaran, P., editor) vol. 1, AIME, New York.Google Scholar
Nery, H., Marchal, J.P., Canet, D. & Cases, J.M. (1980) Nuclear magnetic resonance study of alkylammonium chlorides. I. Proton longitudinal relaxation times and linewidths of isotropic micellar medium. J. Colloid lnterface Sci. 77, 174181.CrossRefGoogle Scholar
Ralston, A.W., Hoffmann, E.J. & Boyd, J.E. (1952) Studies on high molecular weight aliphatic amines and their salts. V. Soluble and insoluble films of the amine hydrochlorides. J. Am. Chem. Soc. 64, 498503.Google Scholar
Range, K.J., Range, A. & Weiss, A. (1969) Fire-clay type kaolinite or fireclay mineral? Experimental classification of kaolinitehalloysite minerals. Proc. Int. Clay Conference, Tokyo, 1, 313.Google Scholar
Rouquerol, J. (1972) Calorimétrie d'adsorption aux basses températures. I. Thermochimie. No. 201. Centre National de la Recherche Scientifique Ed., Paris, 538545.Google Scholar
Rouquerol, J., Rouquerol, F., Peres, C., Grillet, Y. & Boudellal, M. (1979) Calorimetric study of nitrogen and argon adsorption on porous silicas. Pp. 107116 in: ‘Characterization of Porous Solids’ Griegg, S. J., Sing, K. S. W. & Stoekli, H. F., editors). Society of Chemical Industry, London.Google Scholar
Tchoubar, C., Rautureau, M., Clinard, C. & Ragot, J.P. (1973) Technique d'inclusion appliquée à l'étude des silicates lamellaires et fibreux. J. Microscopic 18, 147154.Google Scholar
Thomson, D.W., Macmillan, J.J. & Wyatt, D.A. (1981) Electron microscope studies of the surface microstructures of layer-lattice silicate. J. Colloid Interface Sci. 82, 362372.CrossRefGoogle Scholar
Yvon, J., Liétard, O., Cases, J.M. & Delon, J.F. (1982) Minéralogie des argiles kaoliniques des Charentes. Bull. Minéral 105, 431437.CrossRefGoogle Scholar