Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T00:33:07.572Z Has data issue: false hasContentIssue false

Magnetic ordering in Garfield nontronite under applied magnetic fields

Published online by Cambridge University Press:  09 July 2018

E. Murad
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-8050 Freising-Weihenstephan, Federal Republic of Germany
J. D. Cashion
Affiliation:
Department of Physics, Monash University, Clayton, Victoria 3168, Australia
L. J. Brown
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-8050 Freising-Weihenstephan, Federal Republic of Germany

Abstract

Mössbauer spectra of Garfield nontronite H33a were taken at temperatures between 2·5 and 37 K under longitudinally applied magnetic fields up to 9 T. While no magnetic order was apparent in the absence of an applied field above 7 K, the application of external magnetic fields led to the induction of magnetic hyperfine splitting up to at least 19 K. Variation of the applied fields allowed determination of hyperfine fields of bulk nontronite, and indicated the bulk sample to have a Néel temperature of about 20 K. The non-ideal behaviour of this nontronite, leading to the lack of magnetic order in the absence of applied magnetic fields, is in line with the frustration of antiferromagnetic order in the octahedral sheets due to the presence of about 6% of the iron content in tetrahedral sites, although some influence of magnetic dilution cannot be excluded.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ballet, O. Coey, J.M.D. (1982) Magnetic properties of sheet silicates: 2:1 layer minerals. Phys. Chem. Miner., 8, 218–229.Google Scholar
Bonnin, D. (1981) Proprietes magnetiques liees aux desordres bidimensionnels dans un silicate lamellaire ferrique: la nontronite. PhD. thesis, Univ. de Paris, France.Google Scholar
Cardile, C.M., Johnston, J.H. Dickson, D.P.E. (1986) Magnetic ordering at 4-2 and 1-3 K in nontronites of different iron contents: A 57Fe Mössbauer spectroscopic study. Clays Clay Miner., 34, 233–238.Google Scholar
Coey, J.M.D., Chukhrov, F.V. Zvyagin, B.B. (1984) Cation distribution, Mössbauer spectra, and magnetic properties of ferripyrophyllite. Clays Clay Miner., 32, 198–204.CrossRefGoogle Scholar
Eggleton, R.A. (1977) Nontronite: chemistry and X-ray diffraction. Clay Miner., 12, 181–194.CrossRefGoogle Scholar
Gangas, N.H.J., van Wonterghem, J., Mørup, S. Koch, C.J.W. (1985) Magnetic bridging in nontronite by intercalated iron. J. Phys. C, 18, L1011L1015.Google Scholar
Goodman, B.A. (1978) The Mössbauer spectra of nontronites: Consideration of an alternative assignment. Clays Clay Miner., 26, 176–177.Google Scholar
Guven, N. (1988) Smectites. Pp. 497-559 in: Hydrous Sheet Silicates (Exclusives of Micas).Reviews in Mineralogy, vol. 19 (S. W. Bailey, editor). Mineralogical Society of America, Washington, DC.Google Scholar
Hartmann-Boutron, F., Ait-Bahammou, A. Meyer, C. (1987) Mössbauer detection of magnetic clusters in disordered magnetic materials. J. Physique, 48, 435–444.Google Scholar
Johnston, J.H. Cardile, C.M. (1985) Iron sites in nontronite and the effect of interlayer cations from Mössbauer spectra. Clays Clay Miner., 33, 21–30.Google Scholar
Lear, P.R., Stucki, J.W. (1987) Intervalence electron transfer and magnetic exchange in reduced nontronite. Clays Clay Miner., 35, 373–378.Google Scholar
Madsen, M.B., M0rup, S. Koch, C J.W. (1986) Magnetic moments of ferrihydrite. Hyperfine Interact., 27, 329332.CrossRefGoogle Scholar
Mering, J. Oberlin, A. (1967) Electron-optical study of smectites. Clays Clay Miner., 15, 3–25.Google Scholar
Mørup, S. Topsøe, H. (1977) Direct particle size determination using Mössbauer spectroscopy: Application to Fe3O4. Proc. Int. Conf. Mössbauer Spectroscopy, Bucharest,, 229230.Google Scholar
Mørup, S., Dumesic, J.A. Topsøe, H. (1980) Magnetic microcrystals. Pp. 1-52 in: Applications of Mössbauer Spectroscopy, vol. 2 (R.L. Cohen, editor). Academic Press, New York.Google Scholar
Murad, E. (1987) Mössbauer spectra of nontronites: structural implications and characterization of associated iron oxides. Z. Pflanzenern. Bodenk., 150, 279–285.CrossRefGoogle Scholar
Stucki, J.W. (1988) Structural iron in smectites. Pp. 625-675 in: Iron in Soils and Clay Minerals (J.W. Stucki, B.A. Goodman U. Schwertmann, editors). D. Reidel, Dordrecht.Google Scholar
Stucki, J.W., Golden, D.C. Roth, C.B. (1984) Effects of reduction and reoxidation of structural iron on the surface charge and dissolution of dioctahedral smectites. Clays Clay Miner., 32, 350–356.Google Scholar
Sykes, M.F., Gaunt, D.S. Glen, M. (1976) Percolation processes in two dimensions II. Critical concentrations and the mean size index. J. Phys. A, 9, 97–103.Google Scholar
Townsend, M.G., Longworth, G., Ross, C.A.M. Provencher, R. (1987) Ferromagnetic or antiferromagnetic Felll spin configurations in sheet silicates. Phys. Chem. Miner., 15, 4–70.Google Scholar
Window, B. (1971) Hyperfine field distributions from Mössbauer spectra. J. Phys. E 4, 401402.Google Scholar