Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T20:00:36.487Z Has data issue: false hasContentIssue false

Local ordering of chromium(III) in trioctahedral hydroxide sheets of stichtite studied by ion exchange chromatography

Published online by Cambridge University Press:  09 July 2018

H. C. B. Hansen
Affiliation:
Chemistry Department, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C., Copenhagen, Denmark
C. Bender Koch
Affiliation:
Physics Department, Building 307, Technical University of Denmark, DK-2800 Lyngby, Denmark

Abstract

Stichtite is the layered Mg-Cr(III) hydroxide carbonate of the pyroaurite group. The possibility of describing Cr(III) short range order (SRO) in stichtite by use of ion chromatography of the Cr(III)-hydroxo species following acid dissolution of the compound is described. Two synthetic stichtites of similar composition (average Mg5.73Cr(III)2.27(OH)15.93(O)0.07(CO3)1.10·xH2O) prepared in the absence or presence of hydroxy-bridged Cr(III) dimers and a sample from Dundas, Tasmania, Mg6.29Ni(II)0.02Cr(III)0.90Al0.65Fe(III)0.15(OH)15.26(OH2)0.74(CO3)1.23·xH2O have been examined. Ion chromatography showed the highest degree of SRO for the Dundas stichtite. For the synthetic stichtites the sample synthesized from Cr(III) dimers had the highest SRO. No information on cation ordering could be extracted from powder X-ray diffraction data. Visible spectroscopy indicates that for constant Mg:Cr(III) ratio the crystal field splitting increases with increasing SRO. Two different OH-stretching IR absorption bands (3585 and 3472 cm−1) are assigned to OH coordinated to 3Mg and OH coordinated to 2MgCr or Mg2Cr, respectively.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmann, R. (1970) Doppelschichtstrukturen mit brucitähnlichen Schichtionen [Me(II)1-xMe(III)x(OH)2]x+ . Chimia 24, 99109.Google Scholar
Ardon, M. & Plane, R.A. (1959) The formation of a dinuclear Cr(III) species by oxidation of chromous solutions. J. Am. Chem. Soc. 81, 31973200.CrossRefGoogle Scholar
Besson, G., Drits, g.A., Daynyak, L.G. & Smoliar, B.B. (1987) Analysis of cation distribution in dioctahedral micaceous minerals on the basis of IR spectroscopy data. Clay Miner. 22, 465478.CrossRefGoogle Scholar
Bish, D.L. (1977) The occurence and crystal chemistry of nickel in silicate and hydroxide minerals. PhD thesis, The Pennsylvania State University, USA.Google Scholar
Bookin, A.S., Cherkashin, V.I. & Drits, g.A. (1993) Reinterpretation of the X-ray diffraction patterns of stichtite and reevesite. Clays Clay Miner. 41, 631634.CrossRefGoogle Scholar
Bookin, A.S. & Drits, V.A. (1993) Polytype diversity of the hydrotalcite-like Minerals I. Possible polytypes and their diffraction features. Clays Clay Miner. 41, 551557.CrossRefGoogle Scholar
Brindley, G.W. (1979) Motukoreaite - additional data and comparison with related minerals. Mineral. Mag. 43, 337340.CrossRefGoogle Scholar
Brindley, G.W. (1980) Lattice parameters and composition limits of mixed Mg,A1 hydroxy structures. Mineral Mag. 43, 1047.Google Scholar
Brindley, G.W. & KAO C-C. (1984) Structural and IR relations among brucite-like divalent metal hydroxides. Phys. Chem. Miner. 10, 187191.CrossRefGoogle Scholar
Brinoley, G.W. & Kikkawa, S. (1979) A crystalchemical study of Mg, Al and Ni, A1 hydroxyperchlorates and hydroxy-carbonates. Am. Miner. 64, 836843.Google Scholar
Buchanan, R.A., Caspers, H.H. & Murphy, J. (1963) Lattice vibration spectra of Mg(OH)2 and Ca(OH)2 . Appl. Opt., 2, 11471150.CrossRefGoogle Scholar
Calas, G., Manceau, A., Novikoff, A. & Boukili, H. (1984) Comportement du chrome dans les minéraux d'alteration du gisement du Campo Formosa (Bahia, Brésil). Bull. Mineral. 107, 116982.Google Scholar
Dou, Y. (1990) Equations for calculating Dq And B. J. Chem. Educ. 67, 134.CrossRefGoogle Scholar
Drits, V.A., Sokolova, T.N., Sokolova, G.V. & Cherkashin, V.I. (1987) New members of the hydrotalcite-manasseite group. Clays Clay Miner. 35, 401417.CrossRefGoogle Scholar
Foshag, W.F. (1921) The chemical composition of hydrotalcite and the hydrotalcite group of minerals. Proc. U.S. Nat. Mus. (No. 2329), 147-153.Google Scholar
Giovanoli, R., Stadelmann, W. & Feitknecht, W. (1973) Uber kristallines Chrom(III)hydroxid. I. Helv. Chim. Acta 56, 839847.CrossRefGoogle Scholar
Hansen, H.C.B. & Koch, C.B. (1994) Synthesis and properties of hexacyanoferrate interlayered in hydrotalcite. I. Hexacyanoferrate(II). Clays Clay Miner. 42, 170179.CrossRefGoogle Scholar
Hansen, H.C.B. & Koch, C.B. (1995) Synthesis and characterization of pyroaurite. Appl. Clay Sci. 5–19.CrossRefGoogle Scholar
Hernandez-Moreno, M.J., Ulibarri, M.A., Rendon, J.L. & Serna, C.J. (1985) IR characteristics of hydrotalcite- like compounds. Phys. Chem. Miner. 12, 3438.CrossRefGoogle Scholar
Hezner, L. (1912) Ueber ein neues chromhaltiges Magnesiumhydroxycarbonat. Cbl. Min. 569–571.Google Scholar
Hofmeister, W. & Von Platen, H. (1992) Crystal chemistry and atomic order in brucite-related double-layer structures. Cryst. Rev. 3, 3–29.CrossRefGoogle Scholar
Koch, C.B. & Hansen, H.C.B. (1995) Short range order in pyroaurite. Proc. 10th Int. Clay Conf. Adelaide (in press).Google Scholar
Larsen, S. (1949) An apparatus for the determination of small quantities of carbonate. Acta Chem. Scand. 3, 967970.CrossRefGoogle Scholar
Le Bail, C., THOMASSIN J-H. & TOURAY J-C. (1987) Hydrotalcite-like solid solutions with variable SO2- 4 and CO2- 3 contents at 50°C. Phys. Chem. Miner. 14, 377382.CrossRefGoogle Scholar
Lux, H. & Illmann, G. (1958) Zur Kenntnis der Chrom(II)-salze and des chrom(II)-oxyds, I. Chem. Ber. 91, 21432150.CrossRefGoogle Scholar
Laswlck, J.A. & Plane, R.A. (1959) Hydrolytic polymerization in boiled chromic solutions. J. Am. Chem. Soc. 81, 356467.CrossRefGoogle Scholar
Manceau, A. (1990) Distribution of cation among the octahedra of phyllosilicates: Insight from EXAFS. Can. Miner. 28, 321328.Google Scholar
Mascolo, G. & Marino, O. (1980) A new synthesis and characterization of magnesium-aluminium hydroxides. Mineral. Mag. 43, 619–621.CrossRefGoogle Scholar
Petterd, W.F. (1910) Catalogue of the Minerals of Tasmania. Hobart, pp. 167–170.Google Scholar
Read, H.H. & Dixon, B.E. (1933) On stichtite from Cunningsburgh, Shetland Islands. Mineral. Mag. 23, 309316.Google Scholar
Serna, C.J., Rendon, J.L. & Iglesias, J.E. (1982) Crystal-chemical study of layered [Al2Li(OH)6]+X-.nH2O. Clay Miner. 30, 180184.CrossRefGoogle Scholar
Slonimskaya, M.V., Besson, G., Dainyak, L.G., Tchoubar, C. & Drits, V.A. (1986) Interpretation of the IR spectra of celadonites and glauconites in the region of OH-stretching frequencies. Clay Miner. 21, 377388.CrossRefGoogle Scholar
Spiccia, L. & Marty, W. (1986) The fate of ‘active’ chromium hydroxide, Cr(OH)3.3H2O, in aqueous suspension. Study of the chemical changes involved in its ageing. Inorg. Chem. 25, 266–71.CrossRefGoogle Scholar
Spiccia, L., Stoeckli-Evans, H., Marty, W. & Giovanoli, R. (1987) A new ‘active’ chromium(Ill) hydroxide: Cr2(μ-OH)2(OH)4(OH2)4.2H2O. Characterization and use in the preparation of salts of the (H2O)4Cr(μ-OH)2Cr(OH2)4+ 4 ion. Crystal structure of [(H2O)4Cr(μ-OH)2Cr(OH2)4]-[(H3C)3C6H2SO3]4.4H2O. Inorg. Chem. 26, 474482.CrossRefGoogle Scholar
Stunzi, H. & Marty, W. (1983) Early stages of the hydrolysis of chromium(III) in aqueous solution. 1. Characterization of a tetrameric species. lnorg. Chem. 22, 21452150.CrossRefGoogle Scholar
Taylor, H.F.W. (1969) Segregation and cation-ordering in sjögrenite and pyroaurite. Mineral. Mag. 37, 33842.CrossRefGoogle Scholar
Taylor, H.F.W. (1973) Crystal structures of some double hydroxide minerals. Mineral. Mag. 39, 377389.CrossRefGoogle Scholar
Thevenot, F., Szymanski, R. & Chaumette, P. (1989) Preparation and characterization of Al-rich Zn-A1 hydrotalcite-like compounds. Clays Clay Miner. 37, 396402.CrossRefGoogle Scholar
Tsuji, M., Mao, G., Yoshida, T. & Tamaura, Y. (1993) Hydrotalcites with an extended Al3+-substitution: Synthesis, simultaneous TG-DTA-MS study, and their CO2 adsorption behaviors. J. Mater. Res. 8, 11371142.CrossRefGoogle Scholar
Wilson, M.J., Cradwick, P.D., Berrow, M.L., Mchardy, W.J. & Russell, J.D. (1976) Nickeloan pyroaurite from Leslie, Aberdeenshire. Mineral. Mag. 40, 447451.CrossRefGoogle Scholar