Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T22:34:35.643Z Has data issue: false hasContentIssue false

Local environment of lanthanum ions in montmorillonite upon heating

Published online by Cambridge University Press:  09 July 2018

J. M. Trillo
Affiliation:
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales, Universidad de Sevilla, CSIC, PO Box 874, Sevilla, España
M. D. Alba
Affiliation:
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales, Universidad de Sevilla, CSIC, PO Box 874, Sevilla, España
M. A. Castro
Affiliation:
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales, Universidad de Sevilla, CSIC, PO Box 874, Sevilla, España
A. Muñoz
Affiliation:
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales, Universidad de Sevilla, CSIC, PO Box 874, Sevilla, España
J. Poyato
Affiliation:
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales, Universidad de Sevilla, CSIC, PO Box 874, Sevilla, España

Abstract

Structural differences which occur on heating La-montmorillonite have been studied and compared with those for montmorillonite saturated with Na(I) and Li(I). Rehydration experiments show that La-montmorillonite swells after preheating up to 500°C. However, FT-IR spectra suggest partial migration of the La(III) cations from the interlamellar region to the structural sheets and(or) deprotonation of hydrated La(III) cations, followed by migration of the resulting protons to vacant octahedral sites. Additional measurements of X-ray absorption spectra (EXAFS, XANES) and heating to 700°C suggest that interlamellar hydrated La(III) partially deprotonates producing polyoxocations.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beall, G.W. & Milligan, W.A. (1977) Structural trends in the lanthanide trihydroxides. J. Inorg. Nuc. Chem., 39, 65–70.Google Scholar
Bouldin, C. & Stern, E.A. (1982) Extended X-ray absorption fine structure amplitudes. Phys. Rev. B,, 25, 3462–3473.Google Scholar
Brindley, G.W. & Ertem, G. (1971) Preparation and solvation propertiesof some variable charge montmorillonites. Clays Clay Miner., 19, 399–404.Google Scholar
Brunauer, S., E\tmet, P.H. & Teller, E. (1938) Adsorption of gases in multimolecular layers. J. Am.Chem. Soc. 60, 309–;319.Google Scholar
Calvet, R. & Prost, R. (1971) Cation migration into empty octahedral sites and surface properties of clays. Clays Clay Miner., 19, 175–186.Google Scholar
Cook, J.W. & Sayers, D.E. (1981) Criteria for automatic X-ray absorption fine structure background removal. J- Appl. Phys., 52, 5024–5031.CrossRefGoogle Scholar
Duivenvoorden Koningsberger, D.C., Uh, Y.S. & Gates, B.C. (1986) Structures of alumina-supported osmium clusters (HOs3(CO)10{OA1}) and complexes (Os11((CO)Π=2or3{OAl}) determined by extended X-ray absorption fine structure spectroscopy. J. Am. Chem. Soc., 108, 6254–6262.Google Scholar
El-Akkad, T.M., Flex, N.S., Guindy, N.M., El-Massry, S.R. & Nashed, S. (1982) Nitrogen and water vapour adsorption on monovalent and divalent montmorillonite derivatives and their heats of immersion in polar liquid. Surface Tech., 17, 69–;11.CrossRefGoogle Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals,pp. 331–;363. (Farmer, V.C., editor). Mineralogical Society, London.Google Scholar
Glaeser, R. & Mering, J. (1967) Effet du chauffage sur les montmorillonites saturees de cations de petit rayon C.R. hebd. Seanc. Acad. Sci. Paris,, 265, 833–835.Google Scholar
Greene-Kelly, R. (1955) Dehydration of the montmorillonite minerals. Mineral. Mag., 30, 604–615.Google Scholar
Hofmann, V. & Klemen, R. (1950) Verlust der Austausch fahigkeit von Lithiumionen und Bentonit durch Erhitzung. Z. Anorgan. Chemie,, 262, 95–99.CrossRefGoogle Scholar
Jones, D.J., Roziere, J., Olivera-Pastor, P., Rodriguez, E. & Jimenez, A. (1991) Local environment of intercalated lanthanide ions in vermiculite J. Chem. Soc. Faraday Trans. I,, 87, 3077–3081.Google Scholar
Jaynes, W.F. & Bigham, J.M. (1987) Charge reduction, octahedral charge, and lithium retention in heated, Li- saturated smectites. Clays Clay Miner., 35, 440–448.Google Scholar
Larson, E.M., Lytle, F.W., Eller, P.G., Greegor, R.P. & Eastman, M.P. (1990) XAS study of lanthanide ion speciation in borosilicate glass. J. Non-cryst. Solids, 116, 57–;62.Google Scholar
Larson, E.M., Wong, J., Ellison, A.J.G., Navrotsky, A., Lytle, F.W. & Greegor, R.B. (1991) XANES study of lanthanum in glasses of the system K2O-SiO2-La2O3. Pp- 328–;331 in: X-ray Absorption Fine Structure(S. Hasnain, editor). Ellis Horwood, London.Google Scholar
McKale, A.G., Veal, B.W., Paulikas, A.P., Chen, S.K. & Knapp, G.S. (1988) Improved ab initio calculations of amplitude and phase functions for extended X-ray absorption fine structure spectroscopy. J. Am. Chem. Soc., 110, 3763–3768.Google Scholar
Miller, S.E., Heath, G.R. & Gonzalez, R.D. (1982) Effects of temperature on the sorption of lanthanides by montmorillonite. Clays Clay Miner., 30, 111–122.Google Scholar
Mozas, T., Bruque, S. & Rodriguez, A. (1980) Effect of thermal treatment on lanthanide montmoriilonites: Dehydration. Clay Miner., 15, 421–;428.CrossRefGoogle Scholar
Muñoz-Paez, A., van Groudelle, J., de Boer, M., van Dillen, A.J., Geus, J.W. & Koningsberger, D.C. (1990) Characterization of a well defined highly dispersed vanadium promoted rhodium catalyst with X-ray absorption spectroscopy. Pp. 555–;558 in: 2nd European Conference on Progress in X-ray Synchrotron Radiation Research(Balerna, A., Bemieri, E. & Mobilio, S., editors). Societa’ Italiana di Fisica, Bologna.Google Scholar
Russell, J.D. & Farmer, V.C. (1964) Infrared spectroscopic study of the dehydration of montmorillonite and saponite. Clay Miner. Bull., 5, 443–;464.CrossRefGoogle Scholar
Shabtai, J., Rosell, M. & Tokarz, M. (1984) Cross-linked smectites. III. Synthesis and properties of hydroxy- aluminum hectorites and fluorhectorites. Clays Clay Miner. 32, 99–;107.Google Scholar
Sposito, G., Prost, R. & Gaultier, J.P. (1983) Infrared spectroscopic study of adsorbed water on reduced-charge Na/Li-montmorillonites. Clays Clay Miner. 31, 9–;16.Google Scholar
Stern, E.A., Bunker, B.A. & Heald, S.M. (1980) Many body effects on extended X-ray absorption fine structure amplitudes. Phys. Rev. B, 21, 5521–;5539.Google Scholar
Tilak, D., Tennakoon, B., Thomas, J.M., Jones, W., Carpenter, T. A. & Ramdas, S. (1986) Characterization of clays and clay-organic systems. J. Chem. Soc. Faraday Trans. I,, 82, 545–562.Google Scholar
Trillo, J.M., Poyato, J., Tobias, M.M. & Castro, M.A. (1990) Sorption of water vapour by M-Montmorillonite (M = Na, Li, La). Clay Miner., 25, 485–;498.Google Scholar
Wells, A.F. (1962) Structural Inorganic Chemistry,pp. 464–;465. Oxford University Press. Google Scholar