Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T13:04:57.825Z Has data issue: false hasContentIssue false

Lithium-Bearing Hydrothermal Alteration Phyllosilicates Related to Portalet Fluorite Ore (Pyrenees, Huesca, Spain)

Published online by Cambridge University Press:  09 July 2018

J. M. Gonzlez Lopez
Affiliation:
Cristalografia y Mineralogia, Dpto. Ciencias de la Tierra Universidad de Zaragoza, 50009 Zaragoza, Spain
I. Subias Pirez
Affiliation:
Cristalografia y Mineralogia, Dpto. Ciencias de la Tierra Universidad de Zaragoza, 50009 Zaragoza, Spain
C. Fernandez-Nieto
Affiliation:
Cristalografia y Mineralogia, Dpto. Ciencias de la Tierra Universidad de Zaragoza, 50009 Zaragoza, Spain
I. Fanlo Gonzalez
Affiliation:
Cristalografia y Mineralogia, Dpto. Ciencias de la Tierra Universidad de Zaragoza, 50009 Zaragoza, Spain

Abstract

Phyllosilicate associations in hydrothermally altered fluorite ore bodies are: Li-chlorite ± pyrophyllite ± interstratified minerals ± muscovite +± kaolinite. Chlorites, the main alteration minerals, are dioctahedral, d060 = 1.489-1-490/~,, of Ia polytype. The structural formulae indicate substitution of AI for Si from 0.61-0.78 atoms. The total octahedral occupancy ranges from 4.52-4-71 atoms, with 0.49-0-69 Li atoms per half cell unit. This composition indicates that the chlorites are intermediate members of the donbassite-cookeite series proposed by Sudo (1978). The mineralogical associations and textural relations suggest that after intensive silicification which produced alkali alteration under acid conditions, pyrophyllite was produced at the expense of muscovite and then Li-bearing donbassite formed from the pyrophyllite. The Li needed for the formation of the chlorites could be genetically related to granitic batholiths which occur close to the fluorite ores.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1980) Summary of recommendations of AIPEA Nomenclature committee. Can Miner. 18,143150.Google Scholar
Bailey, S.W. (1982) Nomenclature for regular interstratifications. Am. Miner. 67, 394498.Google Scholar
Bailey, S.W. & Lister, J.S. (1989) Structures, compositions and X-ray diffraction identification of dioctahedral chlorites. Clays Clay Miner. 37, 193202.CrossRefGoogle Scholar
Cerny, P. (1970) Compositional variations in cookeite. Can. Miner. 10, 636647.Google Scholar
Evans, B.W. & Guggenheim, S. (1988) Talc, pyrophyllite and related minerals. Pp. 225-294 in: Hydrous Phyllosilicates (Exclusive of micas) (S.W. Bailey, editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, DC.Google Scholar
Fujii, N., Omori, T. & Fujimori, T. (1971) Dioctahedral chlorite presumably originated from pyrophyllite, from the Shynio mine, Nagano Prefecture, central Japan. Soc. Mining Geol. Japan Spec. 2, 183190.Google Scholar
Gomes, C.S.F. (1967) Alteration of spodumene and lepidolite with formation of dioctahedral chlorite plus dioctahedral chlorite-dioctahedral montmorillonite interstratifications. Mem. Notic. Mus. Mineral. Univ. Coimbra (Portugal) 64, 3257.Google Scholar
Henmi, K. & Yamamoto, T. (1965) Dioctahedral chlorite (sudoite) from Itaya, Okayama Prefecture, Japan. Clay Sci. 2, 92101.Google Scholar
Kodama, H. (1958) Mineralogical study on some pyrophyllites in Japan. Mineral. J. (Japan), 2, 236244.Google Scholar
Loskutov, A.V. (1959) Donbassite from Novaya Zemlya. Miner. Postmagmat. Prots., Leningrad Univ. Sbornik, 28, 19194.(in Russian).Google Scholar
Merceron, T., Inoue, A., Bouchet, A. & Meunier, A. (1989) Lithium bearing donbassite and tosudite from Echasiēres, Massif Central, France. Clays Clay Miner. 36, 3946.Google Scholar
Moore, D.M. & Reynolds, R.C., Jr. (1989) X-ray Diffraction and the Indentification and Analysis of Clay Minerals. Oxford Univ. Press, Oxford.Google Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1-129 in: Chemistry of Clays and Clay Minerals (A.C.D. Newman, editor). Mineralogical Society, London.Google Scholar
Rozinova, E.L. & Dubik, O.Y. (1983) Dioctahedral chlorites. Miner. Zh. 5, 1431.Google Scholar
Sainsbury, Cl. & Kleimhampl, J.F. (1969) Fluorite deposits of Quinn Canyon Range, Nevada. U.S. Geol. Surv. Bull. 1272 C.Google Scholar
Sudo, T. (1978) An outline of clays and clay minerals of Japan. Pp. 1-103 in: Clays and Clay Minerals of Japan (T. Sudo & S. Shimoda, editors). Developments in Sedimentology, 26, Elsevier, Amsterdam.Google Scholar
Velde, B. (1984) Electron microprobe analysis of clay minerals. Clay Miner. 19, 243247.Google Scholar
Vrubevskaya, Z.V.,Delitsin, I.S., Zvyagin, B.B. & Soboleva, S.V. (1975) Cookeite with a perfect regular structure, formed by bauxite alteration. Am. Miner. 60, 10411046.Google Scholar