Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-19T01:00:22.970Z Has data issue: false hasContentIssue false

K-Ar dating of the Lower Palaeozoic K-bentonites from the Baltic Basin and the Baltic Shield: implications for the role of temperature and time in the illitization of smectite

Published online by Cambridge University Press:  09 July 2018

J. Środoń*
Affiliation:
Institute of Geological Sciences PAN, Senacka 1, 31002 Kraków, Poland
N. Clauer
Affiliation:
Centre de Géochimie de la Surface CNRS-ULP, 1, rue Blessig, 67084 Strasbourg, France
W. Huff
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013, USA
T. Dudek
Affiliation:
Institute of Geological Sciences PAN, Senacka 1, 31002 Kraków, Poland
M. Banaś
Affiliation:
Institute of Geological Sciences PAN, Senacka 1, 31002 Kraków, Poland
*

Abstract

Mixed-layer illite-smectite samples from the Ordovician and Silurian K-bentonites of the Baltic Basin and the Baltic Shield (Norway, Sweden, Denmark, Poland and Estonia) were dated by K-Ar on several grain fractions and were studied by X-ray diffraction (XRD), both on oriented and random preparations, in order to reveal the conditions of smectite illitization in the area. Authigenic K-feldspar was also dated. The geographic pattern of the degree of illitization (% smectite in illite-smectite measured by XRD) is consistent with other indicators of palaeotemperatures (acritarchs, conodont alteration index, vitrinite reflectance, apatite fission track ages). It reveals the highest maximum palaeotemperatures (up to at least 200ºC) along the Norwegian and the German-Polish branches of the Caledonides and the lowest palaeotemperatures (120ºC) in the central part of the studied area. The distribution of K-Ar ages is not well correlated with this pattern, revealing a zone of older ages (Lower Devonian-Lower Carboniferous) between Denmark and Estonia, and areas of younger ages (Upper Devonian to Carboniferous/Permian boundary) to the north and south of this zone. The zone of older ages is interpreted as the result of illitization induced by a thermal event in front of the Caledonian orogenic belt (migration of hot metamorphic fluids?). The areas of younger ages are considered as representing deep burial illitization under a thick Silurian-Carboniferous sedimentary cover, perhaps augmented by a tectonic load. The K-Ar dates invalidate the hypothesis of a long-lasting low-temperature illitization as the mechanism of formation of the Estonian Palaeozoic illite-smectite. The ammonium content of illite-smectite from the Baltic K-bentonites reflects the proximity of organic-rich source rocks that underwent thermal alteration at the time of illite crystallization.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altaner, S.P., Hower, J., Whitney, G. & Aronson, J.L. (1984) Model for K-bentonite formation: Evidence from zoned K-bentonites in the Disturbed Belt, Montana. Geology, 12, 412425.Google Scholar
Basset, M.G. (1985) Silurian stratigraphy and facies development in Scandinavia. Pp. 283292 in: The Caledonide Orogen — Scandinavia and Related Areas (Gee, G.G. & Sturt, A., editors). Wiley, London.Google Scholar
Bauer, A. & Velde, V. (1999) Smectite transformation in high molar KOH solutions. Clay Minerals, 34, 259273.Google Scholar
Beaumont, C., Quinland, G.M. & Hamilton, J. (1987) The Alleghanian orogeny and its relationship to the evolution of the Eastern Interior, North America. Pp. 425445 in: Sedimentary Basins and Basin-Forming Mechanisms (Beaumont, C. & Tankard, A.J., editors). Canadian Society of Petroleum Geologists, Memoir 12.Google Scholar
Bergström, S.M., Huff, W.D., Kolata, D.R. & Bauert, H. (1995) Nomenclature, stratigraphy, chemical finger-printing, and areal distribution of some Middle Ordovician K-bentonites in Baltoscandia. Geologiska Föreningens i Stockholm Förhandlingar, 117, 113.Google Scholar
Bethke, C.M. & Marshak, S. (1990) Brine migrations across North America — the plate tectonics of groundwater. Annual Review of Earth and Planetary Sciences, 18, 287315.Google Scholar
Bonhomme, M.G., Thuizat, R., Pinault, Y., Clauer, N., Wendling, A. & Winkler, R. (1975) Méthode de datation Potassium-Argon. Appareillage et technique. Notes technique de llnstitut de Géologie, Université Louis Pasteur, Strasbourg, 3, 53 pp.Google Scholar
Brime, C. & Eberl, D.D. (2002) Growth mechanisms of low-grade illites based on the shapes of crystal thickness distributions. Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 203209.Google Scholar
Cederbom, C., Larson, S.Å., Tullborg, E-L. & Stiberg, J-P. (2000) Fission track thermochronology applied to Phanerozoic thermotectonic events in central and southern Sweden. Tectonophysics, 316, 153167.CrossRefGoogle Scholar
Chaudhuri, S., Środoń, J. & Clauer, N. (1999) K-Ar dating of the illitic fractions of Estonian ‘blue clay’ treated with alkylammonium cations. Clays and Clay Minerals, 47, 96102.Google Scholar
Chen, Z., Riciputi, L.R., Mora, C.I. & Fishman, N.S. (2001) Regional fluid migration in the Illinois basin: evidence from in situ oxygen isotope analysis of authigenic K-feldspar and quartz from the Mount Simon Sandstone. Geology, 29, 10671070.Google Scholar
Clauer, N., Środoń, J., Francu, J. & Šucha, V. (1997) K-Ar dating of illite fundamental particles separated from illite-smectite. Clay Minerals, 32, 181196.Google Scholar
Dallmeyer, R.D., Giese, U., Glasmacher, U. & Pickel, W. (1999) First 40Ar/39Ar age constraints for the Caledonian evolution of the Trans-European Suture Zone in NE Germany. Journal of the Geological Society of London, 156, 279290.Google Scholar
Duane, M.J. & de Witt, M.J. (1988) Pb-Zn ore deposits of the northern Caledonides: Products of continental-scale fluid mixing and tectonic expulsion during continental collision. Geology, 16, 9991002.2.3.CO;2>CrossRefGoogle Scholar
Duffin, M.E., Lee, M., de V. Klein, G. & Hay, R.L. (1989) Potassic diagenesis of Cambrian sandstones and Precambrian granitic basement in UPH-3 deep hole, Upper Mississippi Valley, USA. Journal of Sedimentary Petrology, 59, 848861.Google Scholar
Eberl, D.D. & Hower, J. (1976) Kinetics of illite formation. Geological Society of America Bulletin, 187, 13261330.Google Scholar
Eberl, D.D., Środoń, J. & Northrop, H.R. (1986) Potassium fixation in smectite by wetting and drying. Pp. 296326 in. Geochemical Processes at Mineral Surfaces (Davis, J.A. & Hayes, K.F., editors) American Chemical Society Symposium Series, 323, 296-326.Google Scholar
Eberl, D.D., Velde, B. & McCormick, T. (1993) Synthesis of illite-smectite from smectite at Earth surface temperatures and high pH. Clay Minerals, 28, 4960.CrossRefGoogle Scholar
Eberl, D. D., Drits, V., Środoń, J. & Nuesch, R. (1996) MUDMASTER: A program for calculating crystallite size distributions and strain from the shapes of X-ray diffraction peaks. U.S. Geological Survey Open-File Report, 96-171, 45 pp.Google Scholar
Eberl, D.D., Nuesch, R., Šucha, V. & Tsipursky, S. (1998) Measurement of fundamental particle thicknesses by X-ray diffraction using PVP-10 intercalation. Clays and Clay Minerals, 46, 8997.Google Scholar
Elliot, W.C. & Aronson, J.L. (1987) Alleghanian episode of K-bentonite illitization in the southern Appalachian Basin. Geology, 15, 735739.Google Scholar
Elliot, W.C. & Aronson, J.L. (1993) The timing and extent of illite formation in Ordovician K-bentonites at the Cincinnati Arch, the Nashville Dome and north-eastern Illinois basin. Basin Research, 5, 125135.Google Scholar
Elliot, W.C. & Haynes, J.T. (2002) The chemical character of fluids forming diagenetic illite in the Southern Appalachian Basin. American Mineralogist, 87, 15191527.Google Scholar
Fishman, N.S. (1997) Basin-wide fluid movement in a Cambrian paleoaquifer: evidence from the Mt. Simon Sandstone, Illinois and Indiana. Basin-Wide Diagenetic Petterns: Integrated Petrologic, Geochemical, and Hydrologic Considerations, SEPM Special Publication, 57, 221-234.Google Scholar
Gabis, V. (1963) Etude mineralogique et geoehimique de la serie sedimentaire oligocene du Velay. Bulletin Société Française de Minéralogie et de Cristallographie, 86, 315354.CrossRefGoogle Scholar
Girard, J-P. & Barnes, D.A. (1995) Illitization and paleothermal regimes in the Middle Ordovician St. Peter Sandstone, central Michigan basin: K-Ar, oxygen isotope, and fluid inclusion data. American Association of Petroleum Geologists Bulletin, 79, 4969.Google Scholar
Grathoff, G.H., Moore, M.M., Hay, R.L. & Wemmer, K. (2001) Origin of illite in the lower Paleozoic of the Illinois basin: evidence for brine migrations. Geological Society of America Bulletin, 113, 10921104.2.0.CO;2>CrossRefGoogle Scholar
Hagenfeldt, S. (1996) Lower Palaeozoic acritarchs as indicators of heat flow and burial depth of sedimentary sequences in Scandinavia. Ada Universitatis Carolinae. Geologica, 40, 413424.Google Scholar
Hay, R.L., Lee, M., Kolata, D.R., Matthews, J.C. & Morton, I.P. (1988) Episodic potassic diagenesis of Ordovician tuffs in the Mississippi Valley area. Geology, 16, 743747.Google Scholar
Hay, R.L., Guldman, S.G., Matthews, J.C., Lander, R.H., Duffin, M.E. & Kyser, T.K. (1991) Clay mineral diagenesis in core km-3 of Searles Lake, California. Clays and Clay Minerals, 39, 8496.Google Scholar
Hearn, P.P. Jr., Sutter, J.F. & Belkin, H.E. (1987) Evidence for Late-Paleozoic brine migration in Cambrian carbonate rocks of the central and southern Appalachians: Implications for Mississippi Valley-type sulfide mineralization. Geochimica et Cosmochimica Ada, 51, 13231334.Google Scholar
Hillier, S., Mátyás, J., Matter, A. & Vasseur, G. (1995) Illite/smectite diagenesis and its variable correlation with vitrinite reflectance in the Pannonian Basin. Clays and Clay Minerals, 43, 174183.Google Scholar
Hoffman, J. & Hower, J. (1979) Clay mineral assemblages as low grade metamorphic geothermometers: application to the thrust faulted disturbed belt of Montana, U.S.A. SEPM Special Publication, 26, 5579.Google Scholar
Jung, J. (1954) Les illites du bassin Oligocene de Salins (Cantal). Bulletin Socide Franqaise de Minéralogie et de Cristallographie, 77, 12311249.Google Scholar
Kastner, M. & Siever, R. (1979) Low temperature feldspars in sedimentary rocks. American Journal of Science, 279, 435479.Google Scholar
Keller, W.D. (1956) Glauconitic mica in the Morrison Formation in Colorado. Clays and Clay Minerals, 5, 120128.Google Scholar
Ketcham, R.A., Donelick, R.A. & Carlson, W.D. (1999) Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. American Mineralogist, 84, 12351255.Google Scholar
Kirsimae, K., Jorgensen, P. & Kalm, V. (1999) Low-temperature diagenetic illite-smectite in Lower Cambrian clays in North Estonia. Clay Minerals, 34, 151163.Google Scholar
Larson, S.A., Tullborg, E-L., Cederbom, C. & Stiberg J-P. (1999) Sveconorwegian and Caledonian foreland basins in the Baltic Shield revealed by fission-track thermochronology. Terra Nova, 11, 210215.Google Scholar
Lazauskiene, J., Stephenson, R., Šliaupa, S. & van Vees, J.D. (2002) 3-D flexural modelling of the Silurian Baltic Basin. Tectonophysics, 346, 115135.Google Scholar
Lee, M-K. (1997) Predicting diagenetic effects of groundwater flow in sedimentary basins: a modelling approach with examples. Pp. 314 in. Basin-Wide Diagenetic Petterns: Integrated Petrologic, Geochemical, and Hydrologic Considerations. SEPM Special Publication 57 Google Scholar
Lindgreen, H., Drits, V.A., Sakharov, B.A., Salyn, A.L., Wrang, P. & Dainyak, L.G. (2000) Illite-smectite structural changes during metamorphism in black Cambrian Alum shales from the Baltic area. American Mineralogist, 85, 12231238.Google Scholar
Lindquist, J.E. (1990) Thrust-related metamorphism in basement windows of the central Scandinavian Caledonides. Journal of the Geological Society, 147, 6980 Google Scholar
Liu, J., Hay, R.L., Deino, A. & Kyser, T.K. (2003) Age and origin of authigenic K-feldspar in uppermost Precambrian rocks in the North American Midcontinent. Geological Society of America Bulletin, 115, 422433.Google Scholar
Marshall, B.D., Woodard, H.H. & DePaolo, D.J. (1986) K-Ca-Ar systematics of authigenic sanidine from Waukau, Wisconsin, and the diffusivity of argon. Geology, 14, 936938.Google Scholar
Merriman, R.J., Rex, D.C., Soper, N.J. & Peacor, D.R. (1995) The age of Acadian cleavage in northern England, UK: K-Ar and TEM analysis of a Silurian metabentonite. Proceedings of the Yorkshire Geological Society, 50, 255265.Google Scholar
Moore, D.M. & Reynolds, R.C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford-New York, 378 pp.Google Scholar
Nadeau, P.H. & Reynolds, R.C. Jr. (1981) Volcanic components in pelitic sediments. Nature, 294, 7274.Google Scholar
Nawrocki, J. & Poprawa, P. (2006) Development of Trans-European Suture Zone in Poland: from Ediacaran rifting to Early Palaeozoic accretion. Geological Quarterly, 50, 5976.Google Scholar
Nehring-Lefeld, M., Modlinski, Z. & Swadowska, E. (1997) Thermal evolution of the Ordovician in the western margin of the East-European Platform: CAI and Ro data. Geological Quarterly, 41, 129138.Google Scholar
Nicolas, J. (1962) Sur la presence de “glauconie” en Bretagne Centrale. Genese et Synthese des Argiles. Coll. Int. CNRS 1961, Paris, 197-206.Google Scholar
Nikishin, A.M., Ziegler, P.A., Stephenson, R.A., Cloetingh, S.A.P.L., Furne, A.V., Fokin, P.A., Ershov, A.V., Bolotov, S.N., Korotaev, M.V., Alekseev, A.S., Gorbachev, V.I., Shipilov, E.V., Lankreijer, A., Bembinova E.Yu. & Shlimov, I.V. (1996) Late Precambrian to Triassic history of the East European Craton: dynamics of sedimentary basin evolution. Tectonophysics, 268, 2363.Google Scholar
Oliver, J. (1986) Fluids expelled tectonically from orogenic belts: Their role in hydrocarbon migration and other geologic phenomena. Geology, 14, 99102.Google Scholar
Olsson-Borell, I. (2003) Thermal history of the Phanerozoic sedimentary succession of Skane, southern Sweden, and implications for applied geology. PhD thesis, Dept. Geology, Lund University.Google Scholar
Pichugin, M.S., Puura, V.A., Vingisaar, P.A. & Erisalu, E.K. (1977) Regional metasomatic dolomitization associated with tectonic disturbances in Lower Paleozoic deposits of the northern Baltic region. International Geological Review, 19, 903912.Google Scholar
Poprawa, P. (2006) Neoproterozoic-Paleozoic tectonic processes along the western margin of Baltica — from break-up to accretion. Pp. 189214 in. Fades, tectonic and thermal evolution of the Pomeranian sector of Trans-European Suture Zone and adjacent areas (Matyja, H. & Poprawa, P., editors). Prace Panstwowego Instytutu Geologicznego, 186. Google Scholar
Poprawa, P., Sliaupa, S., Stephenson, R. & Lazauskiene, J. (1999) Late Vendian-Early Paleozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis. Tectonophysics, 314, 219239.Google Scholar
Poprawa, P., Sliaupa, S. & Sidorov, V. (2006) Late Silurian to Early Devonian intra-plate compression in the foreland of Caledonian orogen (central part of the Baltic Basin) — analysis of seismic data. Pp. 189214 in. Fades, Tectonic and Thermal Evolution of the Pomeranian Sector of Trans-European Suture Zone and Adjacent Areas (Matyja, H. & Poprawa, P., editors). Prace Panstwowego Instytutu Geologicznego, 186.Google Scholar
Raidla, V., Kirsimae K, Bityukova, L., Joeleht, A., Shogenova, A. & Sliaupa, S. (2006) Lithology and diagenesis of the poorly consolidated Cambrian siliciclastic sediments in the northern Baltic Sedimentary Basin. Geological Quarterly, 50, 395406.Google Scholar
Roden, M.K., Elliot, W.C., Aronson, J.L. & Miller, D.S. (1993) Comparison of fission-track ages of apatite and zircon to the K/Ar ages of illite-smectite (I/S) from Ordovician K-bentonites, southern Appalachian basin. Journal of Geology, 101, 633641.Google Scholar
Sandier, A. & Harlavan, Y. (2006) Early diagenetic illitization of illite-smectite in Cretaceous sediments (Israel): evidence from K-Ar dating. Clay Minerals, 41, 637658.Google Scholar
Sandier, A. & Saar, H. (2007) R>=l-type illite-smectite formation at near-surface temperatures. Clay Minerals, 42, 245253.Google Scholar
Sandier, A. Harlavan, Y. & Steinitz, G. (2004) Early formation of K-feldspar in shallow-marine sediments at near-surface temperatures (southern Israel): evidence from K-Ar dating. Sedimentology, 51, 323338.Google Scholar
Schedl, A., McCabe, C., Montañez, I.P., Fullagar, P.D. & Valley, J.W. (1992) Alleghenian regional diagenesis: a response to the migration of modified metamorphic fluids derived from beneath the Blue Ridge-Piemont thrust sheet. The Journal of Geology, 100, 339352.Google Scholar
Singer, A. (1984) Clay formation in saprolites of igneous rocks under semiarid to arid conditions, Negev, southern Israel. Soil Science, 137, 332340.Google Scholar
Sole-Benet, A., Gisbert, J. & Larque, Ph. (1990) Pedogenic microlaminated clay in Paleogene sediments. Pp. 689695 in: Soil Micromorphology (Douglas, L.A., editor). Elsevier, Amsterdam.Google Scholar
Środoń, J. (1976) Mixed-layer smectite/illites in the bentonites and tonsteins of the Upper Silesian Coal Basin. Prace Mineralogiczne, 49, 84 pp.Google Scholar
Środoń, J. (1979) Correlation between coal and clay diagenesis in the Carboniferous of the Upper Silesian Coal Basin. Pp. 251260 in: Proceedings of the 6th International Clay Conference., Oxford 1978.Google Scholar
Środoń, J. (1995) Reconstruction of maximum paleotemperatures at present erosional surface of the Upper Silesia Basin, based on the composition of illite/smectite in shales. Studia Geologica Polonica, 108, 922.Google Scholar
Środoń, J. (1999) Use of clay minerals in reconstructing geological processes: current advances and some perspectives. Clay Minerals, 34, 2737.Google Scholar
Środoń, J. (2007) Illitization of smectite and history of sedimentary basins. Pp. 7482 in: Proceedings of the 11th EUROCLAY Conference, Aveiro, Portugal.Google Scholar
Środoń, J. & Clauer, N. (2001) Diagenetic history of Lower Palaeozoic sediments in Pomerania (northern Poland) traced across the Teisseyre-Tornquist tectonic zone using mixed-layer illite-smectite. Clay Minerals, 36, 1527.Google Scholar
Środoń, J., Eberl, D.D. & Drits, V. (2000) Evolution of fundamental particle-size during illitization of smectite and implications for reaction mechanism. Clays and Clay Minerals, 48, 446458.Google Scholar
Środoń, J., Clauer, N. & Eberl, D.D. (2002) Interpretation of K-Ar dates of illitie clays from sedimentary rocks aided by modelling. American Mineralogist, 87, 15281535.Google Scholar
Środoń, J., Clauer, N., Banaś, M. & Wójtowicz, A. (2006a) K-Ar evidence for a Mesozoic thermal event super-imposed on burial diagenesis of the Upper Silesia Coal Basin. Clay Minerals, 41, 671692.Google Scholar
Środoń, J., Kotarba, M., Biroii, A., Such, P., Clauer, N. & Wojtowicz, A. (2006b) Diagenetic history of the Podhale-Orava basin and the underlying Tatra sedimentary structural units (Western Carpathians): evidence from XRD and K-Ar of illite-smectite. Clay Minerals, 41, 747770.Google Scholar
Środoń, J., Zeelmaekers, E. & Derkowski, A. (2009) The charge of component layers of illite-smectite in bentonites and the nature of end-member illite. Clays and Clay Minerals (in press).Google Scholar
Šucha, V., Kraus, I., Gerthofferova, H., Petes, J. & Serekova, M. (1993) Smectite to illite conversion in bentonites and shales of the East Slovak Basin. Clay Minerals, 28, 243253.Google Scholar
Šucha, V., Środoń, J., Clauer, N., Elsass, F., Eberl, D.D., Kraus, I., and Madejova, J. (2001) Weathering of smectite and illite-smectite in Central-European temperate climatic conditions. Clay Minerals, 36, 403419.CrossRefGoogle Scholar
Suggate, R.P. (1998) Relations between depth of burial, vitrinite reflectance and geothermal gradient. Journal of Petroleum Geology, 21, 532.Google Scholar
Torsvik, T.H. & Rehnström, E.F. (2003) The Tornquist Sea and Baltica-Avalonia docking. Tectonophysics, 362, 6782.Google Scholar
Tullborg, E-L., Larson, S.A., Björklund, L., Samuelsson, L. & Stigh, J. (1995) Thermal evidence of a Caledonide foreland molasse sedimentation. SKB Technical Report, TR 95-18, 38 pp.Google Scholar
Ulmishek, G. (1990) Geologic evolution and petroleum resources of the Baltic Basin. American Association of Petroleum Geologists Memoir, 51, 603632.Google Scholar
Weaver, C.E. (1967) Potassium, illite and the ocean. Geochimica et Cosmochimica Ada, 31, 21812196.Google Scholar
Woodard, H.H. (1972) Syngenetic sanidine beds from Middle Ordovician Saint Peter Sandstone, Wisconsin. Journal of Geology, 80, 323332.Google Scholar
Ziegler, K. & Longstaffe, F.J. (2000a) Multiple episodes of clay alteration at the Precambrian/Paleozoic unconformity, Appalachian basin: isotopic evidence for long-distance and local fluid migrations. Clays and Clay Minerals, 48, 474493.Google Scholar
Ziegler, K. & Longstaffe, F.J. (2000b) Clay mineral authigenesis along a mid-continental scale fluid conduit in Palaeozoic sedimentary rocks from southern Ontario, Canada. Clay Minerals, 35, 239260.Google Scholar