Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T16:00:59.307Z Has data issue: false hasContentIssue false

Kaolin from Acoculco (Puebla, Mexico) as raw material: Mineralogical and thermal characterization

Published online by Cambridge University Press:  02 January 2018

M. Garcia-Valles
Affiliation:
Dept. De Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Carrer Martí i Franquès, S/n 08028 Barcelona, Spain
T. Pi
Affiliation:
Dept. De Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Carrer Martí i Franquès, S/n 08028 Barcelona, Spain
P. Alfonso
Affiliation:
Dept. d’Enginyeria Minera i Recursos Naturals, Universitat Politécnica de Catalunya, Av. de les Bases de Manresa 61-73, 08242 Manresa, Barcelona, Spain
C. Canet
Affiliation:
Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, 04510 México, DF, Mexico
S. Martínez
Affiliation:
Dept. De Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Carrer Martí i Franquès, S/n 08028 Barcelona, Spain
A. Jiménez-Franco
Affiliation:
Dept. d’Enginyeria Minera i Recursos Naturals, Universitat Politécnica de Catalunya, Av. de les Bases de Manresa 61-73, 08242 Manresa, Barcelona, Spain Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, 04510 México, DF, Mexico
M. Tarrago*
Affiliation:
Dept. De Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Carrer Martí i Franquès, S/n 08028 Barcelona, Spain
B. Hernández-Cruz
Affiliation:
Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, 04510 México, DF, Mexico
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present study determined the mineralogy and thermal properties of kaolin from Acoculco (Puebla), at the eastern Trans-Mexican Volcanic Belt and compared it with the nearby deposits of Agua Blanca (Hidalgo) and Huayacocotla (Veracruz). The mineralogy of the kaolins was determined by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Thermal behaviour was studied by differential thermal analysis, dilatometry and hot-stage microscopy. The Acoculco deposit is composed mainly of kaolinite and SiO2 minerals. In the case of Agua Blanca and Huayacocotla, alunite is abundant in places and minor anatase is also present locally. The Acoculco kaolins are Fe-poor and relatively rich in some potentially toxic elements (Zr, Sb, Pb). They undergo a relatively small amount of shrinkage (∼3–4 vol.%), during firing at 20–1300°C and cooling down to 20°C, except when >10 wt.% alunite is present. These kaolins are a suitable raw material for the ceramics industry. Other applications (pharmaceuticals, cosmetics) would require an enrichment process to eliminate impurities such as Fe oxides.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2015 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

References

Aparicio, P., Galán, E. & Ferrell, R.E. (2006) A new kaolinite order index based on XRD profile fitting. Clay Minerals, 41, 811817.10.1180/0009855064140220Google Scholar
Baioumy, H.M. (2014) Ti-bearing minerals in sedimentary kaolin deposits of Egypt. Applied Clay Science, 101, 345353.10.1016/j.clay.2014.09.005CrossRefGoogle Scholar
Canet, C., Arana, L., González-Partida, E., Pi, T., Prol-Ledesma, R.-M., Franco, S.I., Villanueva-Estrada, R.-E., Camprubí A., Ramírez-Silva, G. & López-Hernández, A. (2010) A statistics-based method for the short-wave infrared spectral analysis of altered rocks: An example from the Acoculco Caldera, Eastern Trans-Mexican Volcanic Belt. Journal of Geochemical Exploration, 105, 110.10.1016/j.gexplo.2010.01.010Google Scholar
Canet, C., Hernández-Cruz, B., Jiménez-Franco, A., Pi, T., Peláez, B., Villanueva-Estrada, R.-E., Alfonso, P., González-Partida, E. & Salinas, S. (2015) Combining ammonium mapping and short-wave infrared (SWIR) reflectance spectroscopy to constrain a model of hydrothermal alteration for the Acoculco geothermal zone, Eastern Mexico. Geothermics, 53, 154165.10.1016/j.geothermics.2014.05.012Google Scholar
Chakravorty, A.K. & Ghosh, D.K. (1991) Kaolinite-mullite reaction series: The development and significance of a binary alumino silicate phase. Journal of the American Ceramic Society, 74, 14011406.10.1111/j.1151-2916.1991.tb04119.xGoogle Scholar
Cheary, R.W. & Coelho, A.A. (1992) A fundamental parameters approach to X-ray line-profile fitting. Journal of Applied Crystallography, 25, 109121.10.1107/S0021889891010804Google Scholar
De Pablo-Galán, L. (1979) The clay deposits of Mexico. Pp. 475-486 in: Proceedings of the VI International Clay Conference 1978. Developments in Sedimentology, 27 (M.M. Mortland and V.C. Farmer, editors). Elsevier, Amsterdam.Google Scholar
Dixon, J.B. & Weed, S.B., editors (1989) Minerals in Soil Environments. Soil Science Society of America, Madison, Wisconsin, USA, pp. 797808.Google Scholar
Frost, R.L., Wain, D.L., Wills, R.A., Musumechi, A. & Martens, W. (2006) A thermogravimetric study of the alunites of sodium, potassium and ammonium. Thermochimica Acta, 443, 5661.10.1016/j.tca.2005.12.019Google Scholar
Garcia-Valles, M., Hafez, H., Cruz-Matias, I., Verges, E., Aly, M.H., Nogues, J.M., Ayala, D. & Martinez, S. (2013) Calculation of viscosity-temperature curves for glass obtained from four wastewater treatment plants in Egypt. Journal of Thermal Analysis and Calorimetry 111, 107114.10.1007/s10973-012-2232-7Google Scholar
Hinckley, D.N. (1963) Variability in crystallinity values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays and Clay Minerals, 11, 229235.10.1346/CCMN.1962.0110122Google Scholar
Kakali, G., Perraki, T., Tsivilis, S. & Badoginnis, E. (2001) Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Applied Clay Science, 20, 7380.10.1016/S0169-1317(01)00040-0CrossRefGoogle Scholar
Küçük, A. & Gulaboglu, S. (2002) Thermal decomposition of §aphane alunite ore. Industrial and Engineering Chemical Research, 41, 60286032.10.1021/ie020104dGoogle Scholar
Legorreta-Garcia, K., Olvera-Venegas, P.-N.,Hernández-Cruz, L.E., Vergara-Gómez, E., Bolarín-Miró, A.M. & Sánchez De Jesús, F. (2010) Caracterización y separación gravimétrica de arenas de caolín proce-dente de Agua Blanca de Iturbide, Hidalgo (México). XIX International Conference on Extractive Metallurgy, Saltillo, Coahuila, México, pp. 901-911.Google Scholar
Legorreta-Garcia, E.,Hernández-Cruz, L. & Mata Muñoz, P. (2013) Estudio de la remoción de impurezas de arcillas caoliníticas del estado de Hidalgo (México). Revista Latinoamericana de Metalúrgia y Materiales, 33, 308315.Google Scholar
López-Hernández, A., García-Estrada, G., Aguirre-Díaz, G., González-Partida, E., Palma-Guzmán, H. & Quijano-León, J.L. (2009) Hydrothermal activity in the Tulancingo—Acoculco Caldera Complex, central Mexico: exploratory studies. Geothermics, 38, 279293.10.1016/j.geothermics.2009.05.001Google Scholar
López-Galindo, A., Viseras, C. & Cerezo, P. (2007) Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36, 5163.10.1016/j.clay.2006.06.016Google Scholar
Moore, D.M. & Reynolds, R.C. Jr. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, 378 pp.Google Scholar
Morales, G.J. & Garduño, M.V.H. (1984) Estudio tectónico-estructural en el prospecto Huauchinango, Puebla. Internal Report, Instituto Mexicano del Petróleo, Mexico.Google Scholar
Ramachandran, V.S., Paroli, R.M., Beaudoin, J.J. & Delgado, A.H. (2002) Handbook of Thermal Analysis of Construction Materials. Noyes Publications, Devon, UK, 75 pp.Google Scholar
Saikia, N., Bharali, D., Sengupta, P., Bordolo, D., Goswamee, R., Saikia, P. & Borthakur, P.C. (2003) Characterization, beneficiation and utilization of a kaolinite clay from Assam, India. Applied Clay Science, 24, 93103.10.1016/S0169-1317(03)00151-0Google Scholar
Schroeder, P.A. & Erickson, G. (2014) Kaolin: From ancient porcelains to nanocomposites. Elements, 10, 177182.10.2113/gselements.10.3.177CrossRefGoogle Scholar
Silva, P.S.C., Oliveira, S.M.B., Farias, L., Fávaro, D.I.T. & Mazzilli, B.P. (2011) Chemical and radiological characterization of clay minerals used in pharmaceutics and cosmetics. Clay Science, 52, 145149.10.1016/j.clay.2011.02.013CrossRefGoogle Scholar
Smykatz-Kloss, W. (1974) Differential Thermal Analysis, Application and Results in Mineralogy. Springer Verlag, New York, 185 pp.10.1007/978-3-642-65951-5Google Scholar
Spectral International Inc. (1994) SWIR Spectral Mineral Identification System and Spectral Database, SPECMINTM, vol. EL Integrated Spectronics, CO, USA.Google Scholar
Vazquez, F., Torres, L.M., Garza, L.L., Martínez, A. & López, W. (2009) Mexican kaolin deposit: XANES characterization, mineralogical phase analysis and applications. Materiales de Construcción, 59, 113121.Google Scholar
White, N.C. & Hedenquist, J.W. (1995) Epithermal gold deposits: styles, characteristics and exploration. Society of Economic Geologists Newsletter, 23, 913.Google Scholar