Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T08:42:35.521Z Has data issue: false hasContentIssue false

Investigation of the thermal behaviour and decomposition kinetics of kaolinite

Published online by Cambridge University Press:  02 January 2018

Xiaoxu Liu
Affiliation:
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
Xiaowen Liu*
Affiliation:
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
Yuehua Hu
Affiliation:
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
*

Abstract

Previous work on the structural and thermal properties of various types of kaolinite have led to different conclusions, rendering comparison of analytical results difficult. The objectives of the present study were to investigate the thermal behaviour of kaolinite and to carry out a kinetic analysis of the decomposition of kaolinite at high temperatures. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetry-differential scanning calorimetry (TG-DSC) were used to study the mechanism of the thermal decomposition. The modified Coats–Redfern, Friedman, Flynn–Wall–Ozawa and Kissinger decomposition models were used to determine the decomposition mechanism of the kaolinite sample. The dehydroxylation of kaolinite occurred at ∼600°C with the formation of metakaolin, which then transformed into either γ-alumina or aluminium-silicon spinel together with amorphous silica. The results of the XRD and FTIR analyses indicated that the γ-alumina, or aluminium-silicon spinel and amorphous silica phases, transformed into mullite and α-cristobalite, respectively, after decomposition at 900°C. Good linearity was observed with the modified Coats–Redfern, Flynn–Wall–Ozawa and Kissinger models from room temperature to 1400°C and the range of the activation energy determined was 120–180 kJ/mol.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aglietti, E.F. & Lopez, J.P. (1992) Physicochemical and thermal properties of mechanochemically activated talc. Materials Research Bulletin, 27, 12051216.CrossRefGoogle Scholar
Amina, B., Sahnoun, R.D. & Bouaziz, J. (2014) Effects of mechanochemical treatment on the properties of kaolin and phosphate-kaolin materials. Powder Technology, 264, 477483.Google Scholar
Badogiannis, E., Kakali, G. & Tsivilis, S. (2005) Metakaolin as supplementary cementitious material – Optimization of kaolin to metakaolin conversion. Journal of Thermal Analysis and Calorimetry, 81, 457462.CrossRefGoogle Scholar
Balek, V. & Murat, M. (1996) The emanation thermal analysis of kaolinite clay minerals. Thermochimica Acta, 282–283, 385–397.CrossRefGoogle Scholar
Brindley, G.W. (1976). Thermal transformations of clays and layer silicates. Pp. 119–130 in: Proceedings of the International Clay Conference, (S.W. Bailey editor). Mexico City, Mexico, 1965, Applied Publishing , Wilmette, Illinois, USA.Google Scholar
Brindley, G.W. & Nakahira, M. (1957) Kinetics of dehydroxylation of kaolinite and halloysite. Journal of the American Ceramic Society, 40, 346350.CrossRefGoogle Scholar
Brown, M.E., Maciejewski, M., Vyazovkin, S., Nomen, R., Sempere, J., Burnham, A., Opfermann, J., Strey, R. Anderson, H.L., Kemmler, A., Keuleers, R., Janssens, J., Desseyn, H.O., Li, C.-R., Tang, T.B., Roduit, B., Malek, J. & Mitsuhashi, T. (2000) Computational aspects of kinetic analysis. Part A: The ICTAC kinetics project-data, methods and results. Thermochimica Acta, 355, 125143.CrossRefGoogle Scholar
Castelein, O., Soulestin, B., Bonnet, J.P. & Blanchart, P. (2001) The influence of heating rate on the thermal behaviour and mullite formation from a kaolin raw material. Ceramics International, 27, 517522.CrossRefGoogle Scholar
Chakraborty, A.K. (2003) DTA study of preheated kaolinite in the mullite formation region. Thermochimica Acta, 398, 203209.CrossRefGoogle Scholar
Cheng, H.F., Liu, Q.F., Yang, J., Ma, S.J. & Frost, R.L. (2012) The thermal behavior of kaolinite intercalation complexes – A review. Thermochimica Acta, 545, 113.CrossRefGoogle Scholar
Criado, J.M., Ortega, A., Real, C. & Torres de Torres, E. (1984) Reexamination of the kinetics of the thermal dehydroxylation of kaolinite. Clay Minerals, 19, 653661.CrossRefGoogle Scholar
Dellisanti, F., Valdrè, G. & Mondonico, M. (2009) Changes of the main physical and technological properties of talc due to mechanical strain. Applied Clay Science, 42, 398404.CrossRefGoogle Scholar
Flynn, J.H. & Wall, L.A. (1966) General treatment of thermogravimetry of polymers. Journal of Research of the National Bureau of Standards Section A: Physical Chemistry, A70, 487–523.CrossRefGoogle Scholar
Franco, F., Pérez-Maqueda, L.A. & Pérez-Rodríguez, J.L. (2004) The effect of ultrasound on the particle size and structural disorder of a well-ordered kaolinite. Journal of Colloid and Interface Science, 274, 107117.CrossRefGoogle ScholarPubMed
Friedman, H.L. (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia, 6, 183195.CrossRefGoogle Scholar
Heide, K. & Földvari, M. (2006) High temperature mass spectrometric gas-release studies of kaolinite Al2[Si2O5(OH)4] decomposition. Thermochimica Acta, 446, 106112.CrossRefGoogle Scholar
Hu, P.W. & Yang, H.M. (2010) Controlled coating of antimony-doped tin oxide nanoparticles on kaolinite particles. Applied Clay Science, 48, 368374.Google Scholar
Jasmund, K. & Lagaly, G. (1993) Tonminerale und Tone. Steinkopf Verlag. Darmstadt, Germany.CrossRefGoogle Scholar
Johnson, H.B. & Kessler, F. (1969) Kaolinite dehydroxylation kinetics. Journal of the American Ceramic Society, 52, 199203.CrossRefGoogle Scholar
Kakali, G., Perraki, T., Tsivilis, S. & Badogiannis, E. (2001) Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Applied Clay Science, 20, 7380.CrossRefGoogle Scholar
Kissinger, H.E. (1956) Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards, 57, 217221.CrossRefGoogle Scholar
Levy, J.H. & Hurst, H.J. (1993) Kinetics of dehydroxylation, in nitrogen and water vapour, of kaolinite and smectite from Australian Tertiary oil shales. Fuel, 72, 873877.CrossRefGoogle Scholar
Liu, X.X., Yu, L., Xie, F.W., Li, M., Chen, L. & Li, X.X. (2010) Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/ amylopectin ratios. Starch-Starke, 62, 139146.CrossRefGoogle Scholar
Madejová, J. (2003) FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 110.CrossRefGoogle Scholar
Mollah, M.Y.A., Promreuk, S., Schennach, R., Cocke, D.L. & Güler, R. (1999) Cristobalite formation from thermal treatment of Texas lignite fly ash. Fuel, 78, 12771282.CrossRefGoogle Scholar
Murray, H.H. (2000) Traditional and new applications for kaolin, smectite and palygorskite: a general overview. Applied Clay Science, 17, 207221.CrossRefGoogle Scholar
Nahdi, K., Llewellyn, P., Rouquérol, F., Rouquérol, J., Ariguib, N.K. & Ayedi, M.T. (2002) Controlled rate thermal analysis of kaolinite dehydroxylation: effect of water vapour pressure on the mechanism. Thermochimica Acta, 390, 123132.CrossRefGoogle Scholar
Önal, M., Kahraman, S. & Sarikaya, Y. (2007a) Differentiation of a-cristobalite from opals in bentonites from Turkey. Applied Clay Science, 35, 2530.CrossRefGoogle Scholar
Önal, M. & Sarikaya, Y. (2007b) The effect of heat treatment on the paracrystallinity of an opal-CT found in a bentonite. Journal of Non-Crystalline Solids, 353, 41954198.CrossRefGoogle Scholar
Ozawa, T. (1965) A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38, 18811886.CrossRefGoogle Scholar
Pérez-Rodríguez, J.L., Pascual, J., Franco, F., Jiménez de Haro, M.C., Duran, A., Ramírez del Valle, V. & Pérez-Maqueda, L.A. (2006) The influence of ultrasound on the thermal behaviour of clay minerals. Journal of the European Ceramic Society, 26, 747753.CrossRefGoogle Scholar
Prodanović, D., Živković, Ž.D. & Dumić, M. (1989) The kinetics of dehydroxylation and mullitization of zettlitz kaolin in the presence of calcium(II) as an ingredient. Thermochimica Acta, 156, 6167.CrossRefGoogle Scholar
Ptáček, P., Kubátová, D., Havlica, J., Brandštetr, J., Šoukal, F. & Opravil, T. (2010a) Isothermal kinetic analysis of the thermal decomposition of kaolinite: the thermogravimetric study. Thermochimica Acta, 501, 2429.CrossRefGoogle Scholar
Ptáček, P., Kubátová, D., Havlica, J., Brandštetr, J., Šoukal, F. & Opravil, T. (2010b) The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by thermogravimetric analysis. Powder Technology, 204, 222227.CrossRefGoogle Scholar
Ptáček, P., Šoukal, F., Opravil, T., Havlica, J. & Brandštetr, J. (2011) The kinetic analysis of the thermal decomposition of kaolinite by DTG technique. Powder Technology, 208, 2025.CrossRefGoogle Scholar
Reynolds, R.C. & Bish, D.L. (2002) The effects of grinding on the structure of a low-defect kaolinite. American Mineralogist, 87, 16261630.CrossRefGoogle Scholar
Ríos, C.A., Williams, C.D. & Fullen, M.A. (2009) Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods. Applied Clay Science, 42, 446454.CrossRefGoogle Scholar
Sarikaya, Y., Önal, M., Baran, B. & Alemdaroğlu, T. (2000) The effect of thermal treatment on some of the physicochemical properties of a bentonite. Clays and Clay Minerals, 48, 557562.CrossRefGoogle Scholar
Scheckel, K.G., Luxton, T.P., Elbadawy, A.M., Impellitter, C.A. & Tolaymat, T.M. (2010) Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension. Environmental Science & Technology, 44, 13071312.CrossRefGoogle Scholar
Šesták, J. (1984) Thermal Analysis. Part D, Thermophysical Properties of Solids: their Measurements and Theoretical Thermal Analysis. Thermophysical Properties of Solids, vol. 12. Elsevier, New York.Google Scholar
Shvarzman, A., Kovler, K., Grader, G.S. & Shter, G.E. (2003) The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cement and Concrete Research, 33, 405416.CrossRefGoogle Scholar
Tang, W.J., Liu, Y.W., Zhang, H. & Wang, C.X. (2003) New approximate formula for Arrhenius temperature integral. Thermochimica Acta, 408, 3943.CrossRefGoogle Scholar
Traoré, K., Gridi-Bennadji, F. & Blanchart, P. (2006) Significance of kinetic theories on the recrystallization of kaolinite. Thermochimica Acta, 451, 99104.CrossRefGoogle Scholar
Voll, D., Lengauer, C., Beran, A. & Schneider, H. (2001) Infrared band assignment and structural refinement of Al-Si, Al-Ge and Ga-Ge mullites. European Journal of Mineralogy, 13, 591604.CrossRefGoogle Scholar
Voll, D., Angerer, P., Beran, A. & Schneider, H. (2002) A new assignment of IR vibrational modes in mullite. Vibrational Spectroscopy, 30, 237243.CrossRefGoogle Scholar
Wang, H.Y., Li, C.S., Peng, Z.J. & Zhang, S.J. (2011) Characterization and thermal behavior of kaolin. Journal of Thermal Analysis and Calorimetry, 105, 157160.CrossRefGoogle Scholar
Yang, H.M., Du, C.F., Hu, Y.H., Jin, S.M., Yang, W.G., Tang, A.D. & Avvakumov, E.G. (2006) Preparation of porous material from talc by mechanochemical treatment and subsequent leaching. Applied Clay Science, 31, 290297.CrossRefGoogle Scholar
Yao, F., Wu, Q.L., Lei, Y., Guo, W.H. & Xu, Y.J. (2008) Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability, 93, 9098.CrossRefGoogle Scholar
Zhuravlev, L.T. (1993) Surface characterization of amorphous silica – a review of work from the former USSR. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 74, 7190.CrossRefGoogle Scholar