Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T06:47:58.331Z Has data issue: false hasContentIssue false

Infrared study of goethites of varying crystallinity and particle size: II. Crystallographic and morphological changes in series of synthetic goethites

Published online by Cambridge University Press:  09 July 2018

P. Cambier*
Affiliation:
Station de Science du Sol, INRA, Route de St Cyr, 78000 Versailles, France

Abstract

Low crystallinity of unsubstituted goethites is characterized by a small coherently diffracting domain, which may be accompanied by another type of disorder revealed by broader IR half-absorbance band widths. Inside the unit cell, the H-bond is weaker, which increases the OH stretching frequency and lowers the bending frequencies. Also, an increase in parameter a and a change in Fe-O bonds, which might correspond to a minor tilting of octahedra, occur along with a lowering of the frequency of the 630 cm−1 band.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brindley, G.W. & Brown, G. (1980) Crystal structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London.CrossRefGoogle Scholar
Cambier, P. (1986) IR study of goethites of varying crystallinity and particle size. I. Interpretation of some OH and some lattice vibration frequencies. Clay Miner. 21, 191200.Google Scholar
Carter, D.L., Heilman, M.D. & Gonzales, C.L. (1965) The ethylene glycol monoethyl ether technique for determining soil surface area. Soil Sci., 100, 409413.Google Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Mineralogical Society, London.Google Scholar
Fey, M.V. & Dixon, J.B. (1981) Synthesis and properties of poorly crystalline hydrated aluminous goethites. Clays Clay Miner., 29, 91100.CrossRefGoogle Scholar
Forsyth, J.B., Hedley, I.G. & Johnson, C.E. (1968) The magnetic structure and hyperfine field of goethite (α-FeOOH). J. Phys. C. (Proe. Phys. Soc.) 2, 179188.CrossRefGoogle Scholar
Pimentel, G.C. & MacClellan, A.L. (1960) The Hydrogen Bond. Freeman and Co., San Francisco & London.Google Scholar
Sato, K., Sudo, T., Kurosawa, F. & Kammori, O. (1969) The influence of crystallization on the infrared spectra of α- and γ-ferric oxyhydroxides. Nippon Kinzoku Gakkaishi (J. Japan Inst. of Metals) 33, 13711376 (in Japanese).Google Scholar
Schulze, D. & Schwertmann, U. (1984) The influence of aluminum on iron oxides X. The properties of Al-substituted goethites. Clay Miner. 19, 521539.CrossRefGoogle Scholar
Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit saurer Ammonium-Oxalat-Lösung. Z. Pflanzenernähr. Bodenk. 105, 194202.Google Scholar
Schwertmann, U., Cambier, P. & Murad, E. (1985) Properties of goethites of varying crystallinity. Clays Clay Miner. ee, 369378.Google Scholar
Verdonck, L., Hoste, S., Roelandt, F.F. & Van Der Kelen, G.P. (1982) Normal coordinate analysis of α-FeOOH. A molecular approach. J. Mol. Structure 79, 273279.CrossRefGoogle Scholar