Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-04T18:38:42.912Z Has data issue: false hasContentIssue false

Influence of the Ti precursor on the properties of Ti–pillared smectites

Published online by Cambridge University Press:  09 July 2018

M. A. Vicente*
Affiliation:
Departamento de Química Inorgánica, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain
M. A. Bañares-Muñoz
Affiliation:
Departamento de Química Inorgánica, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain
R. Toranzo
Affiliation:
Departamento de Química Inorgánica, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain
L. M. Gandía
Affiliation:
Departamento de Química Aplicada, Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain
A. Gil
Affiliation:
Departamento de Química Aplicada, Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain
*

Abstract

The pillaring of smectites (two saponites and a montmorillonite) with various Ti precursors was studied. The minerals were intercalated with ‘classical ’ Ti precursors, such as titanium tetrachloride and titanium tetraethoxide, and also with new precursors, such as solutions of titanium tetraisopropoxide in acetic acid, or titanium (bis (ethylacetoacetato) diisopropoxide) in acetone. A complete characterization of the intercalated solids was carried out and a comparison of the properties of the solids as a function of the precursors used in the intercalation established. The influence of the severe conditions in which the intercalation with Ti oligomers is usually carried out (low pH and/or high temperature) on the properties of the intercalated solids was analysed. Intercalation with TiCl4 and Ti(EtO)4 strongly affected the structure of the clays, not by acid attack on the octahedral sheet, but mainly by disaggregation of particles. Ti(isop)4 was found to be less aggressive for the clays, while Ti(etacet)2(isop)2 did not form pillared solids but organo-clays, and therefore was of no use as a pillaring agent. The solids were thermally stable up to 300°C, showing a high specific surface area.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bahranowski, K., Dula, R., Labanowska, M. & Serwicka, E.M. (1996) ESR study of Cu centers supported on Al-, Ti-, and Zr-pillared clays. Appl. Spectrosc. 50, 14391445.Google Scholar
Bergaoui, L., Lambert, J.F., Franck, R., Suquet, H. & Robert, J.L. (1995a) Al-pillared saponites. Part 3 – Effect of parent clay layer charge on the intercalation- pillaring mechanism and structural properties. J. Chem. Soc. Faraday Trans. 91, 22292239.Google Scholar
Bergaoui, L., Lambert, J.F., Vicente Rodríguez, M.A., Michot, L.J. & Villiéras, F. (1995b) Porosity of synthetic saponites with variable layer charge pillared by Al13 polycations. Langmui r, 11, 28492852.Google Scholar
Bernier, A., Admaiai, L.F. & Grange, P. (1991) Synthesis and characterization of titanium pillared clays. Influence of the temperature of preparation. Appl. Catal. 77, 269281.Google Scholar
Bovey, J., Kooli, F. & Jones, W. (1996) Preparation and characterization of Ti-pillared acid-activated clay catalysts. Clay Miner. 31, 501506.Google Scholar
Breen, C. (1991) Thermogravimetric and infrared study of the desorption of butylamine, cyclohexylamine and pyridine from Ni- and Co-exchanged montmorillonite. Clay Miner. 26, 487496.Google Scholar
Breen, C., Deeba Zahoor, F., Madejová, J. & Komadel, P. (1995) Characterization of moderately acid-treated, size-fractionated montmorillonites by using IR and MAS NMR spectroscopies and thermal analysis. J. Mater. Chem. 5, 469474.Google Scholar
Breen, C., Deeba Zahoor, F., Madejová, J. & Komadel, P. (1997) Characterization and catalytic activity of acid-treated, size fractionated smectites. J. Phys. Chem. B, 101, 53275331.Google Scholar
Burch, R., editor (1988) Special volume of Catalysis Today. Catal. Today, 2, 185367.Google Scholar
Cheng, L.S., Chang, R.T. & Chen, N. (1996) Iron oxide and chromia supported on titania-pillared clay for selective catalytic reduction of nitric oxide with ammonia. J. Catal. 164, 7081.Google Scholar
Choudary, B.M., Valli, L.K. & Durga Prasad, A. (1990) A new vanadium-pillared montmorillonite catalyst for the regioselective epoxidation of allylic alcohols. J. Chem. Soc. Chem. Commun.721722.Google Scholar
Choudary, B.M., Rani, S.S. & Narender, N. (1993) Asymmetric oxidation of sulfides to sulfoxides by chiral titanium pillared montmorillonite catalyst. Catal. Lett. 19, 299307.Google Scholar
Clearfield, A. (1996) Preparation of pillared clays and their catalytic properties. Pp. 345394 in: Advanced Catalysts and Nanostructured Materials. Modern Synthetic Methods (W.R. Moser, editor). Academic Press, San Diego, CA.Google Scholar
Clearfield, A. (1998) Organically pillared micro- and mesoporous mate ri als. Chem. Mater. 10, 28012810.Google Scholar
Cool, P. & Vansant, E.F. (1998) Pillared clays: preparation, characterization, and applications. P. 265288 in: Molecular Sieves – Science and Technology, Vol. 1, Synthesis (Karge, H.G. & Weitkamp, J., editors). Springer, Berlin and Heidelberg.Google Scholar
Crocker, M., Herold, R.H.M., Buglass, J.G. & Companje, P. (1993) Preparation and characterization of montmorillonite- supported palladium hydrogenation catalyst possessing molecular sieving properties. J. Catal. 141, 700712.Google Scholar
Davies, J.E.D. (1996) Spectroscopic studies on organic molecules intercalated into clays. J. Incl. Phenom. 24, 133147.Google Scholar
Del Castillo, H.L., Gil, A. & Grange, P. (1996) Hydroxylation of phenol on titanium pillared montmorillonite. Clays Clay Miner. 44, 706709.Google Scholar
Del Castillo, H.L., Gil, A. & Grange, P. (1997a) Preparation and characterization of sulfated titanium- modified pillared montmorillonite. Catal. Lett. 43, 133137.Google Scholar
Del Castillo, H.L., Gil, A. & Grange, P. (1997b) Influence of the nature of titanium alkoxide and of the acid of hydrolysis in the preparation of titanium-pillared montmorillonites. J. Phys. Chem. Solids, 58, 10531062.Google Scholar
Einaga, H. (1979) Hydrolysis of titanium(IV) in aqueous (Na, H)Cl solution. J. Chem. Soc. Dalton Trans. 12, 19171919.Google Scholar
Figueras, F. (1988) Pillared clays as catalysts. Catal. Rev. – Sci. Eng. 30, 457499.Google Scholar
Gandía, L.M., Toranzo, R., Vicente, M.A. & Gil, A. (1999) Non aggressive pillaring of clays with zirconium acetate. Comparison with alumina pillared clays. Appl. Catal. A: General, 183, 2333.Google Scholar
Gil, A., Gandía, L.M. & Vicente, M.A. (2000) Recent advances in the synthesis and catalytic applications of pillared clays. Catal. Rev. – Sci. Eng. 42, 145212.Google Scholar
Jong, S.J., Lin, J.T. & Cheng, S. (1994) Synthesis of titanium pillared clay using organic medium. Pp. 3340 in: Zeolite and Microporous Crystals (Hattori, T. & Yashima, T., editors). Elsevier/Kodansha, Tokyo. Stud. Surf. Sci. Catal. 83.Google Scholar
Khalfallah Boudali, L., Ghorbel, A., Tichit, D., Chiche, B., Dutartre, R. & Figueras, F. (1994) Synthesis and characterization of titanium-pillared montmorillonites. Microporous Mater. 2, 525535.Google Scholar
Kijima, T., Nakazawa, H. & Takenouchi, S. (1991) Synthesis of Ti-containing pillared montmorillonite using a trinuclear acetatochlorohydroxo titanium(III) complex. Bull. Chem. Soc. Jpn. 64, 13951397.Google Scholar
Kitayama, Y., Kodama, T., Abe, M., Shimotsuma, H. & Matsuda, Y. (1998) Synthesis of titania pillared saponite in aqueous solution of acetic acid. J. Por. Mater. 5, 121126.Google Scholar
Kloprogge, J.T. (1998) Synthesis of smectites and porous pillared clay catalysts. J. Por. Mater. 5, 541.Google Scholar
Komadel, P., Janek, M., Madejová, J., Weekes, A. & Breen, C. (1997) Acidity and catalytic activity of mildly acid-treated Mg-rich montmorillonite and hectorite. J. Chem. Soc. Faraday Trans. 93, 42074210.Google Scholar
Kooli, F., Bovey, J. & Jones, W. (1997) Dependence of the properties of titanium-pillared clays on the host matrix: a comparison of montmorillonite, saponite and rectorite pillared materials. J. Mater. Chem. 7, 153158.Google Scholar
Kooli, F. & Jones, W. (1997a) Characterization and catalytic properties of a saponite clay modified by acid activation. Clay Miner. 32, 633643.Google Scholar
Kooli, F. & Jones, W. (1997b) Systematic comparison of a saponite clay pillared with Al and Zr metal oxides. Chem. Mater. 9, 29132920.Google Scholar
Kooli, F. & Jones, W. (1998) Al and Zr pillared acidactivated saponite clays: characterization and properties. J. Mater. Chem. 8, 21192124.Google Scholar
Lambert, J.F. & Poncelet, G. (1997) Acidity in pillared clays: origin and catalytic manifestations. Topics Catal. 4, 4356.CrossRefGoogle Scholar
Lin, J.T., Jong, S.J. & Cheng, S. (1993) A new method for preparing microporous titanium pillared clays. Microporous Mater. 1, 287290.Google Scholar
Liu, G.H., Ko, A.N. & Chang, Y.C. (1995) Synthesis and properties of pillared montmorillonite formed by intercalation of transition metal macrocyclic complexes. Micropor. Mater. 5, 6167.Google Scholar
Livage, J., Sanchez, C., Henry, M. & Doeuff, S. (1989) The chemistry of the sol-gel process. Solid State Ionics, 23, 633638.Google Scholar
Loddo, V., Marci, G., Martin, C., Palmisano, L., Rives, V. & Sclafani, A. (1999) Preparation and characterisation of TiO2 (anatase) supported on TiO2 (rutile) catalysts employed for 4-nitrophenol photodegrada-tion in aqueous medium and comparison with TiO2 (anatase) supported on Al2O3 . Appl. Catal. B: Environmental, 20, 2945.CrossRefGoogle Scholar
Maes, N., Heylen, I., Cool, P., de Bock, M., Vanhoof, C. & Vansant, E.F. (1996) Theoretical evaluation of pillared clay as adsorbents: Part I. The microporosity of Al- and Ti-pillared montmorillonite. J. Por. Mater. 3, 4759.Google Scholar
McCabe, R.W. (1996) Clay chemistry. Pp. 313376 in: Inorganic Materials (Bruce, D.W. & O’Hare, D., editors). John Wiley & Sons Ltd., Chichester, UK.Google Scholar
Mitchell, I.V. (1990) Pillared Layered Structures: Current Trends and Applications. Elsevier Applied Science, London.Google Scholar
Moreno, S., Sun Kou, R. & Poncelet, G. (1997) Influence of preparation variables on the structural, textural, and catalytic properties of Al-pillared smectites. J. Phys. Chem. B, 101, 15691578.Google Scholar
Ohtsuka, K., Hayashi, Y. & Suda, M. (1993) Microporous ZrO2-pillared clays derived from three kinds of Zr polynuc lear ionic species. Chem. Mater. 5, 18231829.Google Scholar
Ohtsuka, K. (1997) Preparation and properties of twodimensional microporous pillared interlayere d solids. Chem. Mater. 9, 20392050.Google Scholar
Pesquera, C., González, F., Benito, I., Blanco, C., Mendioroz, S. & Pajares, J.A. (1992) Passivation of a montmorillonite by the silica created during acid activation. J. Mater. Chem. 2, 907911.Google Scholar
Pinnavaia, T.J. (1983) Intercalated clay catalysts. Science, 220, 365371.Google Scholar
Rhodes, C.N. & Brown, D.R. (1993) Surface properties and porosities of silica and acid-treated montmorillonite catalyst supports: Influence on activities of supported ZnCl2 alkylation catalysts. J. Chem. Soc. Faraday Trans. 89, 13871391.Google Scholar
Skaribas, S.P., Pomonis, P.J., Grange, P. & Delmon, B. (1992) Controlled architecture of solids with microand meso-porosity obtained by pillaring of montmorillonite and LaNiOx binary oxide. J. Chem. Soc. Faraday Trans. 88, 32173223.Google Scholar
Sterte, J.P. (1986) Synthesis and properties of titanium oxide cross- linked montmorillonite. Clays Clay Miner. 34, 658664.Google Scholar
Swarnakar, R., Brandt, K.B. & Kydd, R.A. (1996) Catalytic activity of Ti- and Al-pillared montmorillonite and beidellite for cumene cracking and hydrocracking. Appl. Catal. A: General, 142, 6171.Google Scholar
Theocharis, C.R., s’Jacob, K.J. & Gray, A.C. (1988) Enhancement of Lewis acidity in layer aluminosilicates. J. Chem. Soc. Faraday Trans. 1, 84, 15091515.Google Scholar
Tomlinson, A.A.G. (1998) Characterization of pillared layered structures. J. Por. Mater. 5, 259274.Google Scholar
Toranzo, R., Vicente, M.A., Banñares-Munñoz, M.A., Gandía, L.M. & Gil, A. (1998) Pillaring of saponite with zirconium oligomers. Micropor. Mesopor. Mater. 24, 173188.Google Scholar
Vicente Rodríguez, M.A., López González, J.D. & Banñares Munñoz, M.A. (1995) Preparation of microporous solids by acid treatment of a saponite. Micropor. Mater. 4, 251264.Google Scholar
Vicente, M.A., Suárez, M., López González, J.D. & Banñares-Munñoz, M.A. (1996) Characterization, surface area, and porosity analyses of the solids obtained by acid leaching of a saponite. Langmuir, 12, 566572.Google Scholar
Yamanaka, S., Nishihara, T. & Hattori, M. (1987) Preparation and properties of titania pillared clays. Mater. Chem. Phys. 17, 87101.Google Scholar