Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T13:20:34.786Z Has data issue: false hasContentIssue false

The influence of aluminium substitution and crystallinity on the Mössbauer spectra of goethite

Published online by Cambridge University Press:  09 July 2018

E. Murad
Affiliation:
Lehrstuhl für Bodenkunde, TU München, D-8050 Freising-Weihenstephan, FRG
U. Schwertmann
Affiliation:
Lehrstuhl für Bodenkunde, TU München, D-8050 Freising-Weihenstephan, FRG

Abstract

Both aluminium substitution and poor crystallinity reduce the magnetic hyperfine field of goethite. Mössbauer spectra taken at 4·2 K show that the effect of poor crystallinity is similar to that of Al substitution, i.e. it reduces the saturation hyperfine field. A multiple correlation was found to exist between the magnetic hyperfine field at 4·2 K as a dependent variable vs Al substitution and crystallinity as independent variables. If a hyperfine field is to be interpreted with respect to either Al substitution or crystallinity, it is therefore necessary to have knowledge of the other variable.

Resume

Resume

Des substitutions par l'aluminium et une mauvaise cristallinité réduisent toutes les deux le champ magnétique hyper-fin de la goethite. Des spectres Mössbauer enregistrés à 4·2 K montrent que l'effet d'une mauvaise cristallinité est semblable à celui de la substitution par Al, c'est-à-dire qu'elle réduit la saturation du champ hyper-fin. On a montré qu'il existe une corrélation multiple entre le champ magnétique hyper-fin à 4·2 K qui admet comme variable dépendante la substitution par Al et le degré de cristallinité en tant que variable indépendante. Si on doit interpréter le champ hyperfin par rapport à la substitution Al ou la cristallinité, il est donc nécessaire de connaître l'une ou l'autre des deux variables.

Kurzreferat

Kurzreferat

Sowohl Al-Substitution als auch geringe Kristallqualität verkleinern das magnetische Hyperfeinfeld von Goethit. Mößbauerspektren bei 4·2 K zeigen, daß der Effekt geringer Kristallqualität ähnlich dem von Al-Substitution ist, also das Sättigungshyperfeinfeld verringert. Zwischen dem magnetischen Hyperfeinfeld bei 4·2 K (als Zielgröße) und der Al-Substitution und der Kristallinität (als unabhängige Variablen) wurde eine multiple Korrelation gefunden. Bevor ein Hyperfeinfeld im Hinblick auf Al-Substitution oder Kristallqualität interpretiert wird, ist es daher notwendig, auch die Größe der jeweils anderen Variablen zu kennen.

Resumen

Resumen

Tanto la sustitución de hierro por aluminio como la baja cristalinidad reducen el campo magnético hiperfino de la goethita. Los espectros Mössbauer obtenidos a 4·2 K muestran que el efecto de la baja cristalinidad es similar al de la sustitución de aluminio, es decir reduce el campo hiperfino de saturación. Se encontró que existe una correlación múltiple entre el campo magnético hiperfino a 4·2 K como variable dependiente y la sustitución de aluminio y la cristalinidad como variables independientes. Por lo tanto, para interpretar los valores del campo hiperfino es necesario tener en cuenta las dos variables citadas.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, L.H. (1952) The use of ionization potentials. Part I. Ionic radii of the elements. Geochim. Cosmochim. Acta 2, 155169.Google Scholar
Bioham, J.M., Golden, D.C., Bowen, L.H., Buol, S.W. & Weed, S.B. (1978) Iron oxide mineralogy of well-drained ultisols and oxisols: I. Characterization of iron oxides in soils clays by Mössbauer spectroscopy, X-ray diffractometry, and selected chemical techniques. Soil Sci. Soc. Am. J. 42, 816825.Google Scholar
Correns, C.W. & Engelhardt, W. Von (1941) Röntgenographische Untersuchung über den Mineralbestand sedimentärer Eisenerze. Nachr. Akad. Wis. Göttingen, Math.-Phys. Kl. 213, 131137.Google Scholar
Davey, B.G., Russell, J.D. & Wilson, M.J. (1975) Iron oxide and clay minerals and their relation to colours of red and yellow podzolic soils near Sydney, Australia. Geoderma 14, 125138.Google Scholar
DeGrave, E., Bowen, L.H. & Weed, S.B. (1982) Mössbauer study of aluminum-substituted hematites. J. Magnetism Magnet. Mater. 27, 98108.Google Scholar
Fitzpatrick, R.W. & Schwertmann, U. (1982) Al-substituted goethite—an indicator of pedogenic and other weathering environments in South Africa. Geoderma 27, 335347.Google Scholar
Fleisch, J., Grimm, R., Grübler, J. & Gütlich, P. (1980) Determination of the aluminum content of natural and synthetic alumogoethites using Mössbauer spectroscopy. J. Physique Cl 41, 169170.Google Scholar
Forsyth, J.B., Hedley, I.G. & Johnson, C.E. (1968) The magnetic structure and hyperfine field ofgoethite (α-FeOOH). J. Phys. C. Ser. 2, 1, 179188.Google Scholar
Fysh, S.A. & Clark, P.E. (1982) Aluminous goethite: A Mössbauer study. Phys. Chem. Miner. 8, 180187.CrossRefGoogle Scholar
Golden, D.C., Bowen, L.H., Weed, S.B. & Bigham, J.M. (1979) Mössbauer studies of synthetic and soil-occurring aluminum-substituted goethites. Soil Sci. Soc. Am. J. 43, 802808.CrossRefGoogle Scholar
Goodman, B.A. & Lewis, D.G. (1981) Mössbauer spectra of aluminous goethites (α-FeOOH). J. Soil Sci. 32, 251263.Google Scholar
Hogg, C.S., Malden, P.J. & Meads, R.E. (1975) Identification of iron-containing impurities in natural kaolinites using the Mössbauer effect. Miner. Mag. 40, 8996.Google Scholar
Janot, C., Chabanel, M. & Herzog, E. (1968) Étude d'une limonite par effet Mössbauer. Bull Soc. franc. Minér. Crist. 91, 166171.Google Scholar
Johnston, J.H. & Norrish, K. (1981) A 57Fe Mössbauer spectroscopic study of a selection of Australian and other goethites. Aust. J. Soil Res. 19, 231237.Google Scholar
Jónás, K. & Solymar, K. (1970) Preparation, X-ray, derivatographic and infrared study of aluminium-substituted goethites. Acta Chim. Acad. Sci. Hungar. 66, 383394.Google Scholar
Kämpf, N. & Schwertmann, U. (1982) The 5M NaOH concentration method for iron oxides in clays. Clays Clay Miner. 30, 401408.Google Scholar
Kraan, A.M. van der & Loef, J.J. Van (1966) Superparamagnetism in submicroscopic α-FeOOH particles observed by the Mössbauer effect. Phys. Lett. 20, 614616.Google Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 5, 317327.Google Scholar
Murad, E. (1979) Mössbauer spectra of goethite: evidence for structural imperfections. Miner. Mag. 43, 355361.Google Scholar
Murad, E. (1982a) The characterization ofgoethite by Mössbauer spectroscopy. Am. Miner. 67, 10071011.Google Scholar
Murad, E. (1982b) Iron oxide mineralogy of a hydrothermal assemblage on Santorini Island, Aegean Sea. Miner. Mag. 46, 8993.Google Scholar
Nahon, D., Janot, C., Karpoff, A.M., Paquet, H. & Tardy, Y. (1977) Mineralogy, petrography and structures of iron crusts (ferricretes) developed on sandstones in the western part of Senegal. Geoderma 19, 263277.Google Scholar
Norrish, K. & Taylor, R.M. (1961) The isomorphous replacement of iron by aluminium in soil goethites. J. Soil Sci. 12, 294306.Google Scholar
Schroeer, D. (1970) The Mössbauer effect in microcrystals. Mössbauer Effect Methodology 5, 141162.Google Scholar
Schulze, D.G. (1981) Identification of soil iron oxide minerals by differential X-ray diffraction. Soil Sci. Soc. Am. J. 45, 437440.Google Scholar
Schulze, D.G. (1982) The identification of iron oxides by differential X-ray diffraction and the influence of aluminum substitution on the structure ofgoethite. PhD Thesis, T.U. Müchen, 167pp.Google Scholar
Schwertmann, U., Murad, E. & Schulze, D.G. (1982) Is there Holocene reddening (hematite formation) in soils of axeric temperate areas?. Geoderma 27, 209223.Google Scholar
Schwertmann, U. & Taylor, R.M. (1972) The influence of silicate on the transformation of lepidocrocite to goethite. Clays Clay Miner. 20, 159164.Google Scholar
Shinjo, T. (1966) Mössbauer effect in antiferromagnetic fine particles. J. Phys. Soc. Japan 21, 917922.Google Scholar
Simopoulos, A., Kostikas, A., Sigalas, I., Gangas, N.H. & Moukarika, A. (1975) Mössbauer study of transformations induced in clay by firing. Clays Clay Miner. 23, 393399.Google Scholar
Thiel, R. (1963) Zum System α-FeOOH-α-AlOOH. Z. anorg. analyt. Chem. 326, 7078.Google Scholar
Torrent, J., Schwertmann, U. & Schulze, D.G. (1980) Iron oxide mineralogy of some soils of two river terrace sequences in Spain. Geoderma 23, 191208.Google Scholar
Violet, C.E. & Pipkorn, D.N. (1971) Mössbauer line positions and hyperfine interactions in α iron. J. Appl. Phys. 42, 43394342.Google Scholar
Woude, F. Van Der & Dekker, A.J. (1966) Mössbauer effect in α-FeOOH. Phys. stat. sol. 13, 181193.Google Scholar
Yamamoto, N. (1968) The particle size dependence of the Néel temperature of α-FeOOH fine particles. Bull. Inst. Chem. Res. Kyoto Univ. 46, 283288.Google Scholar