Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T01:02:49.188Z Has data issue: false hasContentIssue false

Improved evaluation of layer charge of n-alkylammonium-treated fine soil clays by Lorentz- and polarization-correction and curve-fitting

Published online by Cambridge University Press:  09 July 2018

H. Stanjek
Affiliation:
Lehrstuhl für Bodenkunde der Technischen Universität München, Freising-Weihenstephan, Germany
E. A. Niederbudde
Affiliation:
Lehrstuhl für Bodenkunde der Technischen Universität München, Freising-Weihenstephan, Germany

Abstract

The clay mineralogy of K-fixing soils from southern Germany was investigated using the alkylammonium method. Conventional X-ray diffraction chart recordings of glycerol-saturated <0·1 µm samples showed peaks at 18 Å that were initially interpreted as smectites. However, step-scanning combined with the Lorentz- and polarization-correction and curve-fitting, revealed the presence of low- and high-charge smectites and of low- and high-charge vermiculites. The severe overlap of the 001 basal reflections of the high-charge vermiculites with the broad and intensive peaks of smectites sensu stricto prevented visual evaluation at the alkylchains nc = 5–9, but this problem was overcome by curve-fitting. The 002 peaks of high-charge vermiculites (nc = 8 and nc = 10) in the fraction 0·1–0·2 µm could furthermore be clearly resolved from the 001 peaks of illite by curve-fitting. In one example, 003 (at nc = 17) could be resolved from 001 of illite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bassett, W.A. (1959) The origin of the vermiculite deposit at Libby. Am. Miner., 44, 282–299.Google Scholar
Bfxkett, P.H.T. (1964) Studies on soil potassium, II. The immediate O/I relations of labile potassium in the soil. J. Soil Sci., 15, 9–23.Google Scholar
Bish, D.L. & Posr, J.E. (1989) Modern Powder Diffraction.(Reviews in Mineralogy, Volume 20). Mineralogical Society of America, Washington.Google Scholar
Brindley, G.W. (1966) Ethylene glycerol and glycol complexes of smectites and vermiculites. Clay Miner., 6, 237–259.Google Scholar
Brindley, G.W. (1981) Long-spacing organics for calibrating long spacings of interstratified clay minerals. Clays Clay Miner., 29, 67–68.Google Scholar
Chen, C.C., Turnbr, F.T. & Dixon, J.B. (1989) Ammonium fixation by high-charge smectite in selected Texas Gulf coast soils. Soil Sci. Soc. Amer. J., 53, 1035–1040.Google Scholar
Eugster, H.P. & Munoz, J. (1966) Ammonium micas: Possible sources of atmospheric nitrogen. Science, 151, 683–686.CrossRefGoogle Scholar
Friedrich, R. (1985) Schichtladungsbestimmungen und K-Frcisetzung mit Alkylammonium an Tonfraktionen aus Löβen und Löβboden. Mifti Dtsch. Rodenkundl. Ges., 43, 917–922.Google Scholar
Ghabru, S.K., Mermut, A.R. & Arnaud, R.J.St. (1989) Layer-charge and cation-exchange characteristics of vermiculite (weathered biotite) isolated from a gray Luvisol in northeastern Saskatchewan. Clays Clay Miner., 37, 164172.Google Scholar
Gjems, O. (1967) Studies on clay minerals and clay mineral formation on soil profiles in Scandinavia. Norske Skogfers0ksvesen Nr. HI, Vollebekk, Norge,, 301415.Google Scholar
Graf von Reichenbach, H. & Rich, C.I. (1969) Potassium release from muscovite as influenced by particle size. Clays Clay Miner., 17, 2329.Google Scholar
Häusler, W. & Stanjek, H. (1988) A refined procedure for the determination of the layer charge with alkylammonium ions. Clay Miner., 23, 333–337.Google Scholar
Dirk, Hilberg (1989) Akima-Interpolation. c. Magazin fur Computertechnik, 206214.Google Scholar
Janik, L.M. & Raupach, M. (1977) An iterative, least-squares program to separate infrared absorption spectra into their component bands. CSIRO Div. of Soils Tech. Paper, 35, 1–37.Google Scholar
Klug, H.P. & Alexander, L.E. (1973) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. S. Wiley & Sons, New York.Google Scholar
Lagaly, G. (1981) Characterization of clays by organic compounds. Clay Miner., 16, 1–21.Google Scholar
Lagaly, G. (1982) Layer charge heterogeneity in vermiculites. Clays Clay Miner., 30, 215–222.CrossRefGoogle Scholar
Lagaly, G. & Weiss, A. (1969) Determination of layer charge in mica-type layer silicates. Proc. Int. Clay Conf. Tokyo,, 1, 61–68.Google Scholar
Lagaly, G. & Weiss, A. (1976) The layer charge of smectitic layer silicates. Proc. Int. Clay Conf. Mexico,, 157172. Google Scholar
Lagaly, G., Fernandez Gonzales, M. & Weiss, A. (1976) Problems in layer-charge determination of montmorillonite. Clay Miner., 11, 173–187.CrossRefGoogle Scholar
Laird, D.A., Fenton, T.E. & Scott, A.D. (1988) Layer charge of smectites in an argi alboll-argi aquoll sequence. Soil Sci. Soc. Amer. J,, 52, 463-467.Google Scholar
Laird, D.A., Scott, A.D. & Fenton, T.E. (1987) Evaluation of the alkylammonium method of determining layer charge. Clays Clay Miner., 37, 4M6.Google Scholar
Laird, D. A., Scott, A.D. & Fenton, T.E. (1989) Interpretation of alkylammonium characterization of soil clays. Soil Sci. Soc. Amer. J., 51, 1659–1663.Google Scholar
Laves, D. & Jahn, G. (1972) Zur quantitativen rontgenographischen Bodenton-Mineralanalyse. Arch. Acker-, Pflanzenbau Bodenkde., 16, 735–739.Google Scholar
Malla, P.B. & Douglas, L. A. (1987) Layer charge properties of vermiculites: Tetrahedral vs. octahedral. Soil Sci. Soc. Amer., 7. 51, 13621366.CrossRefGoogle Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner., 7, 317–327.Google Scholar
Niederbudde, E.A. (1986) Factors affecting potassium release and fixation in soils. Trans. XIII Int. Congr. Soc. Soil Sci. Hamburg, VI, 11551167.Google Scholar
Niederbudde, E.A. & KuBmaul, H. (1978) Tonmineraleigenschaften und -Umwandlungen in Parabraunerde- Profilpaaren unter Acker und Wald in Siiddeutschland. Geoderma, 20, 239–255.CrossRefGoogle Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249-303 in: Crystal Structures of Clay Minerals and their X-ray Identification(Brindley, G. W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Rühlicke, G. & NiederbuddeE.A. (1985) Determination of layer-charge density of expandable 2:1 clay minerals in soils and loess sediments using the alkylammonium method. Clay Miner., 20, 291–300.Google Scholar
Savitzky, A. & Golay, M.J.E. (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem., 36, 1627–1639.Google Scholar
Savitzky, A. & Golay, M.J.E. (1972) Comments on smoothing and differentiation of data by simplified least square procedure. Anal. Chem., 44, 1906–1909.Google Scholar
Scherrer, P. (1918) Bestimmung der Gro8e und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nachr. d. konigi Ges. Wiss. zu Gottingen,, 26, 98–100.Google Scholar
Schulze, D.G. (1984) The influence of aluminum on iron oxides VIII. Unit-cell dimension of Al-substituted goethites and estimation of Al from them. Clays Clay Miner., 32, 36–44.Google Scholar
Scott, A.D. (1968) Effect of particle size on interlayer potassium exchange in micas. Trans. 9th Int. Congr. Soil. Sci. Adelaide,, 11, 649–660.Google Scholar
Stanjek, H. & Friedrich, R. (1986) The determination of layer charge by curve-fitting of Lorentz- and polarization- corrected X-ray diagrams. Clay Miner., 21, 183–190.Google Scholar
Walker, G.F. (1958) Reactions of expanding-lattice clay minerals with glycerol and ethylene glycol. Clay Miner, Bull., 3, 302–313.Google Scholar
Weir, A.H. & Rayner, J.H. (1974) An interstratified illite-smectite from Denchworth series soil in weathered Oxford clay. Clay Miner., 10, 173187.Google Scholar