Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-08T13:25:54.176Z Has data issue: false hasContentIssue false

High-resolution multinuclear NMR study of cation migration in montmorillonite

Published online by Cambridge University Press:  09 July 2018

V. Luca
Affiliation:
Chemistry Department, Victoria University of Wellington, Private Bag, Wellington
C. M. Cardile
Affiliation:
Chemistry Division, DSIR, Private Bag, Petone, New Zealand
R. H. Meinhold
Affiliation:
Chemistry Division, DSIR, Private Bag, Petone, New Zealand

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Note
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Engelhardt, G. & Radeglia, R. (1984) A semi-empirical quantum-chemical rationalisation of the correlation between SiOSi angles and 29Si NMR chemical shifts of silica polymorphs and framework aluminosilicates (zeolites). Chem. Phys. Lett. 108, 271274.CrossRefGoogle Scholar
Freude, D., Haase, J., Klinowski, J., Carpenter, T.A. & Ronikier, G. (1985) NMR line shifts caused by the second order quadrupolar interaction. Chem. Phys. Lett. 119, 365367.Google Scholar
Grobet, P.J., Mortier, W.J. & Van Genechten, K. (1985) Influence of the cation distribution in zeolites on the isotropic 29Si:NMR chemical shift. Chem. Phys. Lett. 119, 361364.Google Scholar
Hofmann, V. & Klemen, R. (1950) Verlust der austauschfahigheit von lithiumionen on bentonit durch erhitzurg. Z. Anorg. Allg. Chem. 262, 9599.CrossRefGoogle Scholar
Janes, N. & Oldfield, E. (1985) Prediction of Si-29 NMR chemical shifts using a group electronegativity approach. J. Am. Chem. Soc. 107, 67696775.CrossRefGoogle Scholar
Samoson, A. (1985) Satellite transition high resolution NMR of quadrupolar nuclei in powders. Chem. Phys. Lett. 119, 2932.CrossRefGoogle Scholar
Smith, J.V. & Blackwell, C.S. (1983) Nuclear magnetic resonance of silica polymorphs. Nature 303, 223225.CrossRefGoogle Scholar
Tennakoon, D.T.B., Thomas, J.M., Jones, W., Carpenter, T.A. & Ramdas S, (1986) Characterisation of days and clay organic systems cation diffusion and hydroxylation. J. Chem. Soc. Faraday Trans. 1 82, 545562.Google Scholar
Thomas, J.M., Fyfe, C.A., Ramdas, S., Klinowski, J. & Gobbi, G.C. (1982) High-resolution silicon-29 nuclear magnetic resonance spectrum of zeolite ZK-4: Its significance in assessing magic-angle-spinning nuclear magnetic resonance as a structural tool for aluminosilicates. J. Phys. Chem. 86, 30613064.CrossRefGoogle Scholar
Thomas, J.M. & Klinowski, J. (1985) The study of aluminosilicates and related catalysts by high resolution NMR spectroscopy. Adv. Catal. 33, 199374.Google Scholar
Weiss, Z., Rieder, M., Chmielova, M. & Krajicek, J. (1985) Geometry of the octahedral coordination in micas; a review of refined structures. Am. Miner. 70, 747757.Google Scholar