Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T04:56:16.311Z Has data issue: false hasContentIssue false

Geochemistry of halloysite-7Å formation from plagioclase in trachyandesite rocks from Limnos Island, Greece

Published online by Cambridge University Press:  27 February 2018

D. Papoulis*
Affiliation:
Department of Geology, Section of Earth Materials, University of Patras, GR-265 04 Patras, Greece
S. Komarneni
Affiliation:
Department of Crop and Soil Sciences and Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
D. Panagiotaras
Affiliation:
Department of Mechanical Engineering, Technological Educational Institute (TEI) of Western Greece, M. Alexandrou 1, 263 34 Patras, Greece
*

Abstract

Trachyandesite rocks, occurring over an area of about 1 km2 in the southwest part of Limnos Island, Greece, are altered mainly to halloysite. The samples were collected and analysed by polarizing microscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and chemical analysis. The alteration of plagioclase to halloysite follows seven discrete stages that are described in detail. The geochemical evaluation of the data shows enrichment of the light REE (LREE) over heavy REE (HREE) as expressed by the (La/Yb)n ratio. The ΣLREE range from 206.44 to 272.30, while the sum of HREE varies from 11.01 to 26.26. The (La/Yb)n ratio ranges from 9.72 to 27.64. Fractionation among LREE expressed as (La/Sm)n and between middle REE (MREE) and HREE is shown as (Tb/Yb)n ratios. The most altered rocks close to the fault zone have high (Tb/Yb)n ratios and low (La/Sm)n and Eu/Eu* ratios. Although mineralogy and clay mineral textures indicate hydrothermal genesis of halloysite, the geochemical data are not conclusive due to a secondary weathering effect.

Type
The 14th George Brown Lecture
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bobos, I. & Gomes, C. (1998) Greisen and post-greisen alteration in the Sao Vicente de Pereira kaolinite deposit, Portugal. The Canadian Mineralogist, 36, 16151624.Google Scholar
Christidis, G.E. (2001) Formation and growth of smectites in bentonites: a case study from Kimolos island, Aegean, Greece. Clays and Clay Minerals, 49, 204215.Google Scholar
Churchman, G.J. (2000) The alteration and formation of soil minerals by weathering. Handbook of Soil Science (M.E. Sumner, editor). CRC Press, Boca Raton, Florida.Google Scholar
Churchman, C.J., Whitton, J.S., Claridge, G.G.C. & Theng, B.K.G. (1984) Intercalation method using formamide for differentiating halloysite from kaolinite. Clays and Clay Minerals, 32, 241248.Google Scholar
Cravero, F., Marfil, S.A. & Maiza, P.J. (2010). Statistical analysis of geochemical data: a tool for discriminating between kaolin deposits of hypogene and supergene origin, Patagonia, Argentina. Clay Minerals, 45, 183196.Google Scholar
Dill, H.G., Bosse, H.-R., Henning, K.-H., Fricke, A. & Ahrend, H. (1997) Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt - The Central Andes of northwestern Peru. Mineralium Deposita, 32, 149163.CrossRefGoogle Scholar
Dixon, J.B. (1977) Kaolin and serpentine group minerals. Pp. 367-403 in: Minerals in Soil Environments (J.B. Dixon & S.B. Weed, editors). Soil Science Society of America, Madison, Wisconsin.Google Scholar
Dong, H., Peacor, D.R. & Murphy, S.F. (1998) TEM study of progressive alteration of igneous biotite to kaolinite throughout a weathered soil profile. Geochimica et Cosmochimica Acta, 62, 18811887.Google Scholar
Ece, Ö.I. & Schroeder, A.P. (2007) Clay mineralogy and chemistry of halloysite and alunite deposits in the Turplu area, Balikesir, Turkey. Clays and Clay Minerals, 55, 1835.Google Scholar
Ece, Ö.I., Schroeder, A.P., Smilley, M.J. & Wampler, J.M. (2008) Acid-sulphate hydrothermal alteration of andesitic tuffs and genesis of halloysite and alunite deposits in the Biga Peninsula, Turkey. Clay Minerals, 43, 281315.Google Scholar
Fytikas, M., Giuliani, O., Innocenti, F., Manetti, P., Mazzuoli, R., Peccerillo, A. & Villari, L. (1980) Neogene volcanism of the northern and central Aegean region. Annales Geologiques des Pays Helleniques, 30, 106129.Google Scholar
Fytikas, M., Innocenti, F., Manetti, P., Mazzuoli, R., Peccerillo, A. & Villari, L. (1984) Tertiary to Quaternary evolution of volcanism in the Aegean region. Pp. 687-699 in: The Geological Evolution of the Eastern Mediterranian (J.E. Dixon & A.H.F. Robertson, editors). Special Publications, 17. Geological Society of London.Google Scholar
Innocenti, F., Manetti, P., Mazzuoli, R., Pertusati, P., Fytikas, M. & Kolios, N. (1994) The geology and geodynamic significance of the island of Limnos, North Aegean sea, Greece. Neues Jahrbuch für Geologie und Paläontologie, 11, 661691.CrossRefGoogle Scholar
Inoue, A., Utada, M. & Hatta, T. (2012) Halloysite-tokaolinite transformation by dissolution and recrystallization during weathering of crystalline rocks. Clay Minerals, 47, 373390.Google Scholar
Jeong, G.Y. (1998) Formation of vermicular kaolinite from halloysite aggregates in the weathering of plagioclase. Clays and Clay Minerals, 46, 270279.Google Scholar
Joussein, E., Petit, S., Churchman, J., Theng, B., Righ, D. & Delvaux, B. (2005) Halloysite clay minerals - a review. Clay Minerals, 40, 383426.CrossRefGoogle Scholar
Kö ster, H. (1974). Ein Beitrag zur Geochemie und Enstehung deroberpfa¿lzischen Kaolin-Feldspat- Lagerstätten. Geologische Rundschau, 63, 655689.CrossRefGoogle Scholar
Koukouvelas, I.K., Pe-Piper, G., Piper, D.J.W., Kokkalas, S. & Dolansky, L. (2005) Miocene volcanism of Limnos, NE Greece. Pp. 53-54 in: Geology of Thrace and Seismotectonics of NE Aegean Sea. Samothrace, Greece.Google Scholar
Lee, S.Y. & Gilkes, R.J. (2005) Groundwater geochemistry and composition of hardpans in southweastern Australian regolith. Geoderma, 126, 5984.Google Scholar
Lottermoser, B.G. (1992) Rare earth element and hydrothermal ore formation processes. Ore Geology Review, 7, 2541.Google Scholar
Maksimovic, Z. & Panto, G.Y. (1983) Mineralogy of yttrium and lanthanide elements in karstic bauxite deposits. Travaux ICSOBA, 18, 191200.Google Scholar
Marfil, S.A., Maiza, P.J. & Montecchiary, N. (2010) Alteration zonation in the Loma Blanca kaolin deposit, Los Menucos, Province of Rio Negro, Argentina. Clay Minerals, 45, 157169.CrossRefGoogle Scholar
Michard, A. (1989). Rare earth element systematics in hydrothermal fluid. Geochimica et Cosmochimica Acta, 53, 745750.CrossRefGoogle Scholar
Pandarinath, K., Dulski, P., Torres Alvarado, I.S. & Verma, S.P. (2008) Element mobility during the hydrothermal alteration of rhyolitic rocks of the Los Azufres geothermal field, Mexico. Geothermics, 37, 5372.Google Scholar
Papoulis, D. & Tsolis-Katagas, P. (2008) Formation of alteration zones and kaolin genesis, Limnos Island, northeast Aegean Sea, Greece. Clay Minerals, 43, 631646.CrossRefGoogle Scholar
Papoulis, D., Tsolis-Katagas, P. & Katagas, C. (2004a) Monazite alteration mechanisms and depletion measurements in kaolins. Applied Clay Science, 24, 271285.Google Scholar
Papoulis, D., Tsolis-Katagas, P. & Katagas, C. (2004b) Progressive stages in the formation of kaolin minerals of different morphologies in the weathering of plagioclase. Clays and Clay Minerals, 52, 3, 275286.Google Scholar
Papoulis, D., Tsolis-Katagas, P., Kalampounias, G.A. & Tsikouras, B. (2009) Progressive formation of halloysite from the hydrothermal alteration of biotite and formation mechanisms of anatase in altered volcanic rocks from Limnos Island, Northeast Aegean Sea, Greece. Clays and Clay Minerals, 57, 566577.Google Scholar
Pe-Piper, G. & Piper, D.J.W. (2002) The Igneous rocks of Greece, the Anatomy of an Orogen. Gebrüder Borntraeger, Berlin, Stuttgart.Google Scholar
Pe-Piper, G., Piper, D.J.W. Koukouvelas, I., Dolansky, L.D. & Kokkalas, S. (2009) Postorogenic shoshonitic rocks and their origin by melting underplated basalts: the Miocene of Limnos, Greece. Geological Society of America Bulletin, 121, 3954.Google Scholar
Romero, R., Robert, M., Elsass, F. & Garcia, C. (1992) Abundance of halloysite neoformation in soils developed from crystalline rocks. Contribution of transmission electron microscopy. Clay Minerals, 27, 3546.Google Scholar
Percival, H.J. (1995) Relative stabilities of selected clay minerals in soils based on a critical selection of solubility constants. Pp. 462468 in: Clays Control the Environment - Proceedings of the 10th International Clay Conference 1993 (G.J. Churchman R.W. Fitzpatrick & R.A. Eggleton, editors). Adelaide, Australia.Google Scholar
Roussos, N., Katsaounis, A., Tsaila-Monopoli, S., Ioakeim, X., Karadasi, S. & Davi, E. (1993) Geological Map of Limnos Island. Institute of Geology and Mineral Exploration (I.G.M.E.). Greece.Google Scholar
Singh, B. & Gilkes, R.J. (1992) An electron optical investigation of the alteration of kaolinite to halloysite. Clays and Clay Minerals, 40, 212229.Google Scholar
Steefel, C.I. & van Cappellen, P. (1990) A new kinetic approach to modeling water-rock interaction: the role of nucleation, precursors, and Ostwald ripening. Geochimica et Cosmochimica Acta, 54, 26572677.Google Scholar
Utada, M. (1980) Hydrothermal alteration related to igneous acidity in Cretaceous and Neogene formations of Japan. Mining Geology of Japan, Special Issue, 12, 7992.Google Scholar
Wakita, H., Rey, P. & Schmitt, R.A. (1971) Abundances of the 14 rare-earth elements and 12 other traceelements in Apollo 12 samples: five igneous and one breccia rocks and four soils. Proceedings to the 2nd Lunar Science Conference, 13191329.Google Scholar
Yui, T.F., Maki, K., Usuki, T., Lan, C.Y., Martens, U., Wu, T.W., Liou, J.G. & Wu, C.M. (2010) Genesis of Guatemala jadeitite and related fluid characteristics: insight from zircon. Chemical Geology, 270, 4555.CrossRefGoogle Scholar