Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T19:35:01.123Z Has data issue: false hasContentIssue false

Geochemical processes in compacted clay in contact with an acid landfill leachate: laboratory experiments and modelling results

Published online by Cambridge University Press:  27 February 2018

I. S. De Soto*
Affiliation:
Departamento de Ciencias del Medio Natural, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra, 31006 Pamplona. Spain
C. Ayora
Affiliation:
Instituto de Diagnostico Ambiental y Estudios del Agua, Consejo Superior de Investigaciones Científicas, 08034 Barcelona, Spain
J. Cuevas
Affiliation:
Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
*

Abstract

Clays are commonly used as liners in urban landfills. However, the reactive processes with landfill leachates, and in particular the role of accessory minerals is poorly known. The aim of this work is to evaluate the diffusion of a synthetic urban landfill leachate through compacted natural smectite-illitic clays containing carbonates and sulfates and to predict the functioning of the clay liner for different minor mineral proportions. The leachate, characterized by acidic pH conditions and high organic matter content, is a typical aqueous solution formed in the acetogenic phase of organic matter degradation in urban landfill areas. Medium-scale (11 cm) laboratory diffusion tests were performed over 77 days. Chloride diffusion coefficients, porosity changes, cation exchange constants and the sulfate reduction rate were quantitatively assessed by means of reactive transport modelling. The exchange capacity of the clays is responsible for NH4+ retention. However, the presence or absence of gypsum in the initial clay rock controls the functioning of the liner. Gypsum dissolution ensures a high sulfate concentration in the porewater and enhances the acetate consumption via sulfate reduction. Gypsum dissolution and the concomitant calcite precipitation do not significantly alter the porosity of the clay rock.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1999/31/EC, O.J.L. (1999) Council Directive of 26 April 1999 on the ladfill of waste, European Union legislation.Google Scholar
2003/33/EC, O.J.L. (2002) Council Decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC on the landfill of waste, European Union legislation.Google Scholar
2008/1/EC, O.J.L. (2008) Council Directive of 15 January 2008 concerning integrated pollution prevention and control, European Union legislation.Google Scholar
2008/98/EC, O.J.L. (2008) Council Directive of 19 November 2008 on waste and repealing certain directives, European Union legislation.Google Scholar
Almasri, M.N. & Kaluarachchi, J.J. (2011) Groundwater quality: fate and transport of contaminants. Pp. 36–84 in: Groundwater Quantity and Quality Management (M.M. Aral & S.W. Taylor, editors). American Society of Civil Engineers, Virginia.Google Scholar
Appelo, C.A.J. & Postma, D. (2005) Geochemistry, Groundwater and Pollution. Balkema Publishers, Amsterdam.Google Scholar
Appelo, C.A.J., Van Loon, L.R. & Wersin, P. (2010) Multicomponent diffusion of a suite of tracers (HTO, Cl, Br, I, Na, Sr, Cs) in a single sample of Opalinus Clay. Geochimica et Cosmochimica Acta, 74, 12011219.Google Scholar
Barbieri, M., Carrera, J., Sanchez-Vila, X., Ayora, C., Cama, J., Köck-Schulmeyez, M., López de Alda, M., Barceló, D., Tobella, J. & Hernández, M. (2011) Microcosm experiments to control anaerobic redox conditions when studying the fate of organic micropollutants in aquifer material. Journal of Contaminant Hydrology, 126, 330345.Google Scholar
Barcic, D. & Ivancic, I. (2010). Impact of the Prudinec/ Jakusevec landfill on environment pollution. Sumarski List, 134, 347359.Google Scholar
Birgersson, M. & Karnland, O. (2009) Ion equilibrium between montmorillonite interlayer space and an external solution – consequences for diffusional transport. Geochimica et Cosmochimica Acta, 73, 19081923.Google Scholar
Bozkurt, S., Sifvert, M., Moreno, L. & Neretnieks, I. (2001) The long-term evolution of and transport processes in a self-sustained final cover on waste deposits. Science of the Total Environment, 271, 145168.Google Scholar
Bradbury, M.H. & Baeyens, B. (2003). Porewater chemistry in compacted re-saturated MX-80 bentonite. Journal of Contaminant Hydrology, 61, 329338.Google Scholar
Castelló, R., Recio, C., Morillas, P. & Vizcayno, C. (2008) Pyrite formation driven by MSW landfill leachate in the Madrid Basin, Spain. Environmental Geology, 54, 679688.Google Scholar
Chou, L., Garrels, R.M. & Wollast, R. (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chemical Geology, 78, 269282.Google Scholar
Christensen, T.H., Bjerg, P.L., Banwart, S.A., Jakobsen, R., Heron, G. & Albrechtsen, H.J. (2000) Characterization of redox conditions in groundwater contaminant plumes. Journal of Contaminant Hydrology, 45, 165241.CrossRefGoogle Scholar
Committee to Assess the Performance of Engineered Barriers. (2007) Assessment of the Performance of Engineered Waste Containment Barriers. The National Academies Press, Washington, D.C.Google Scholar
De Soto, I.S., Ruiz, A.I., Ayora, C., García, R. Regadío, R. & Cuevas, J. (2012) Diffusion of landfill leachate through compacted natural clays containing small amounts of carbonates and sulfates. Applied Geochemistry, 27, 12021213.Google Scholar
Dohrmann, R. (2006) Cation exchange capacity methodology. III: Correct exchangeable calcium determination of calcareous clays using a new silverthiourea method. Applied Clay Science, 34, 4757.Google Scholar
Dohrmann, R. & Kaufhold, S. (2009) Three new, quick CEC method for determining the amounts of exchangeable calcium cations in calcareous clays. Clays and Clay Minerals, 57, 338352.Google Scholar
Drever, L.L. (1998) The Geochemistry of Natural Waters. Prentice Hall, New Jersey.Google Scholar
Eggen, T., Moeder, M. & Arukwe, A. (2010) Municipal landfill leachates: A significant source for new and emerging pollutants. Science of the Total Environment, 408, 51475157.Google Scholar
Fernandez, A.M., Baeyens, B., Bradbury, M.H. & Rivas, P. (2004) Analysis of the porewater chemical composition of a spanish compacted bentonite used in an engineered barrier. Physics and Chemistry of the Earth, 29, 105118.Google Scholar
Foged, N. & Baumann, J. (1999) Clay membrane made of natural high plasticity clay: leachate migration due to advection and diffusion. Engineering Geology 54, 129137.Google Scholar
Frascari, D., Bronzini, F., Giordano, G., Tedioli, G. & Nocentini, A. (2004) Long-term characterization, lagoon treatment and migration potential of landfill leachate: a case study in an active Italian landfill. Chemosphere, 54, 335343.Google Scholar
Gates, W.P., Bouazza, A. & Churchman, G.J. (2009) Bentonite clay keeps pollutants at bay. Elements, 5, 105110.CrossRefGoogle Scholar
González, I., Galán, E. Miras, A. & Aparicio, P. (1998) New uses for brick-making clays materials from the Bailén area (southern Spain). Clay Minerals, 33, 453465.Google Scholar
Goorah, S.S.D., Esmyot, M.L.I. & Boojhawon, R. (2009) The health impact of nonhazardous solid waste disposal in a community: the case of the Mare Chicose landfill in Mauritius. Journal of Environmental Health, 72, 4854.Google Scholar
Inskeep, W.P. & Bloom, P.R. (1985) An evaluation of rate equations for calcite precipitation kinetics at pCO2 less than 0.01 atm and pH greater than 8. Geochimica et Cosmochimica Acta, 49, 21652180.Google Scholar
Kang, J.B. & Shackelford, C.D. (2010) Membrane behavior of compacted clay liners. Journal of Geotechnical and Geoenvironmental Engineering, 136, 13681382.Google Scholar
Karnland, O., Olsson, S. & Nilsson, U. (2006) Mineralogy and sealing properties of various bentonites and smectite-rich clay materials. SKB. TR-06-30, Stockholm.Google Scholar
Kaufhold, S., Dohrmann, R. & Klinkenberg, M. (2010) Water-uptake capacity of bentonites. Clays and Clay Minerals, 58, 3743.Google Scholar
Li, Y., Low, G.K.C., Scott, J.A. & Amal, R. (2011) Microbial transformation of arsenic species in municipal landfill leachate. Journal of Hazardous Materials, 188, 140147.Google Scholar
Liu, S.T. & Nancollas, G.N. (1971) The kinetics of dissolution of calcium sulfate dihydrate. Journal of Inorganic and Nuclear Chemistry, 33, 23112316.Google Scholar
Madsen, F.T. (1998) Clay mineralogical investigations related to nuclear waste disposal. Clay Minerals, 33, 109129.Google Scholar
Malusis, M.M., Shackelford, C.D. & Olsen, H.W. (2003) Flow and transport through clay membrane barriers. Engineering Geology, 70, 235248.Google Scholar
Molera, M., Eriksen, T. & Jansson, M. (2003) Anion diffusion pathways in bentonite clay compacted to different dry densities. Applied Clay Science, 23, 6976.CrossRefGoogle Scholar
Montes, H.G., Fritz, B., Clement, A. & Michau, N. (2005) Modelling of geochemical reactions and experimental cation exchange in MX80 bentonite. Journal of Environmental Management, 77, 3546.Google Scholar
Munro, I.R.P., MacQuarrie, K.T.B., Valsangkar, A.J. & Kan, K.T. (1997) Migration of landfill leachate into a shallow clayey till in southern New Brunswick: A field and modeling investigation. Canadian Geotechnical Journal, 34, 204219.Google Scholar
Naudet, V., Revil, A., Rizzo, E., Bottero, J.Y. & Bégassat, P. (2004) Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. Hydrology and Earth System Sciences, 8, 822.Google Scholar
Owen, J.A. & Manning, D.A.C. (1997) Silica in landfill leachates: implications for clay mineral stabilities. Applied Geochemistry, 12, 267280.Google Scholar
Parkhurst, D.L. & Appelo, C.A.J. (1999) User’s guide to PHREEQC (version 2). A computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations, Amsterdam.Google Scholar
Pivato, A. & Raga, R. (2006) Tests for the evaluation of ammonium attenuation in MSW landfill leachate by adsorption into bentonite in a landfill liner. Waste Management, 26, 123132.Google Scholar
Real Decreto 1481/2001, de 27 de diciembre, por el que se regula la eliminación de residuos mediante depó sito en vertedero. Spanish legislation.Google Scholar
Regadío, M., Ruiz, A.I., De Soto, I.S., Rodríguez Rastrero, M., Sánchez Jiménez, N., Gismera, M.J., Sevilla, M.T., Da Silva, P. & Cuevas, J. (2012) Pollution profiles and physicochemical parameters in old uncontrolled landfills. Waste Management, 32, 482497.Google Scholar
Renou, S., Givaudan, J.G., Poulain, S., Dirassouyan, F. & Moulin, P. (2008) Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150, 468493.Google Scholar
Rhoades, J.D. (1982) Cation exchange capacity. Pp. 149–157 in: Methods of Soil Analysis, Part 2 – Chemical and Microbiological Properties (A.L. Miller & D.R. Keeney, editors). American Society of Agronomy – Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
Rosanne, M.M.N., Koudina, N., Prunet-Foch, B., Thovert, J.F., Tevissen, E. & Adler, P.M. (2003) Transport properties of compact clays. II. Diffusion. Journal of Colloid and Interface Science, 260, 195203.Google Scholar
Rowe, R.K. (1998) Movement of pollutants through clayey soil. Annual Geotechnical Conference, Minnesota Section ASCE, 1–34.Google Scholar
Ruiz, A.I., Fernández, R. Sánchez, N. Rodrigez, M., Regadío, M. de Soto, I.S. & Cuevas, J. (2012) Improvement of attenuation functions of a clayey sandstone for landfill containment by bentonite addition. Science of the Total Environment, 419, 8189.CrossRefGoogle ScholarPubMed
Saaltink, M.W., Ayora, C. & Carrera, J. (1998) A mathematical formulation for reactive transport that eliminates mineral concentrations. Water Resources Research, 34, 16491656.Google Scholar
Saaltink, M.W., Battle, F., Ayora, C., Carrera, J. & Olivella, S. (2004) RETRASO, a code for modeling reactive transport in saturated and unsaturated porous media. Geologica Acta, 2, 235251.Google Scholar
Sánchez-Jiménez, N., Sevilla, M.T., Cuevas, J., Rodríguez, M. & Procopio, J.R. (2012) Interaction of organic contaminants with natural clay type geosorbents: Potential use as geologic barrier in urban landfill. Journal of Environmental Management, 95, S182–S187.Google Scholar
Shackelford, C.D. & Moore, S.M. (2013) Fickian diffusion of radionuclides for engineered containment barriers: Diffusion coefficients, porosities, and complicating issues. Engineering Geology, 152, 133147.Google Scholar
Tchobanoglous, G., Theisen, H. & Vigil, S. (1994) Gestión integral de residuos sólidos. McGrawHill, Madrid.Google Scholar
Thabet, O.B.D., Bouallagui, H., Cayol, J., Ollivier, B., Fardeau, M.L. & Hamdi, M. (2009) Anaerobic degradation of landfill leachate using an up flow anaerobic fixed bed reactor with microbial sulfate reduction. Journal of Hazardous Materials, 167, 11331140.Google Scholar
Thomas, W.G. (1982) Exchangeable cations. Pp.159–165 in: Methods of Soil Analysis, Part 2 – Chemical and Microbiological Properties (A.L. Miller A.L. & D.R. Keeney, editors). American Society of Agronomy – Soil Science Society of America, Madison, Wisconsin, USA.CrossRefGoogle Scholar
Thornton, S.F., Tellam, J.H. & Lerner, D.N. (2000) Attenuation of landfill leachate by UK Triassic sandstone aquifer materials. 1. Fate of inorganic pollutants in laboratory columns. Journal of Contaminant Hydrology, 43, 327354.Google Scholar
UNE 22-161-92 (1992) Standard method for mineralogical quantification of clay samples containing sepiolite.Google Scholar
UNE 22-164-94 (1994) Standard method for BET specific surface determination in sepiolite-based materials.Google Scholar
Unnisa, S.A., Sankar, A.S. & Mukkanti, K. (2008) Landfill impact on groundwater. Pp. 269–272 in: Proceedings of the 8th International Conference on Electric Power Systems, High Voltages, Electric Machines (S.C. Misra, R. Revetria, L.M. Sztandera, M. Iliescu, A. Zaharim & H. Parsiani, editors). WSEAS Press, Venice.Google Scholar
Van Breukelen, B.M. (2003) Natural Attenuation of Landfill Leachate: a Combined Biogeochemical Process Analysis and Microbial Ecology Approach, PhD thesis, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, The Netherlands.Google Scholar
Van Loon, L.R., Glaus, M.A. & Muller, W. (2007) Anion exclusion effects in compacted bentonites: Towards a better understanding of anion diffusion. Applied Geochemistry, 22, 25362552.Google Scholar
Varank, G., Demir, A.,Top, S., Sekman, E., Akkaya, E., Yetilmezsoy, K. & Sian Bilgili, M. (2012) Migration behavior of landfill leachate contaminants through alternative composite liners. Science of the Total Environment, 17, 31833196.Google Scholar
VanGulck, J.F. & Rowe, R.K. (2004a) Evolution of clog formation with time in columns permeated with synthetic landfill leachate. Journal of Contaminant Hydrology, 75, 115139.Google Scholar
VanGulck, J.F. & Rowe, R.K. (2004b) Influence of landfill leachate suspended solids on clog (biorock) formation. Waste Management, 24, 723738.Google Scholar
Whitworth, T.M. & Ghazifard, A. (2009) Membrane effects in clay-lined inward gradient landfills. Applied Clay Science, 43, 248252.Google Scholar
Williams, P.T. (2005) Waste Treatment and Disposal. John Wiley & Sons, Ltd, England.Google Scholar
Xie, H.J., Chen, Y.M., Zhan, L.T., Chen, R.P., Tang, X.W., Chen, R.H. & Ke, H. (2009) Investigation of migration of pollutant at the base of Suzhou Qizishan landfill without a liner system. Journal of Zhejiang University-Science, 10, 439449.Google Scholar
Ziyang, L., Youcai, Z., Tao, Y., Yu, S., Huili, C., Nanwen, Z. & Renhua, H. (2009) Natural attenuation and characterization of contaminants composition in landfill leachate under different disposing ages. Science of the Total Environment, 407, 33853391.Google Scholar