Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T13:13:25.212Z Has data issue: false hasContentIssue false

Genesis of bentonites from Cabo de Gata, Almeria, Spain: a stable isotope study

Published online by Cambridge University Press:  09 July 2018

G. Leone
Affiliation:
Dipartimento di Scienze della Terra of the University, Via S. Maria 22, 56100 Pisa, Italy
E. Reyes
Affiliation:
Estacion Experimental del Zaidin, CSIC, Prof. Albareda 1, Granada, Spain
G. Cortecci
Affiliation:
Dipartimento di Scienze della Terra of the University, Via S. Maria 22, 56100 Pisa, Italy
A. Pochini
Affiliation:
Dipartimento di Scienze della Terra of the University, Via S. Maria 22, 56100 Pisa, Italy
J. Linares
Affiliation:
Estacion Experimental del Zaidin, CSIC, Prof. Albareda 1, Granada, Spain

Abstract

Oxygen (18O/16O) and hydrogen (2H/1H) isotopic ratios were measured on 22 smectite separates from bentonite deposits of the Sierra de Gata and Serrata de Nijar, Almeria, Spain. In addition, 18O/16O and 2H/1H ratios were determined on some waters from springs and wells, and 18O/16O ratios were measured on quartz, plagioclase and biotite samples separated from the bentonites. The smectites displayed two distinct isotopic compositional groups which excluded an origin either by submarine alteration or weathering under normal surface conditions of the associated volcanic rocks. Bentonization processes caused by low-temperature fluids of meteoric origin could account for the stable isotopic contents. Argillization temperatures are estimated at ∼40°C and ∼70°C for the Serrata de Nijar and the Sierra de Gata deposits, respectively.

Resume

Resume

Les rapports isotopiques de l'oxygène (18O/16O) et de l'hydrogène (2H/1H) ont été mesurés sur des smectites isolées de bentonite provenant de la Sierra de Gata et de la Serrata de Nijar, Almeria, Espagne. Ces mêmes rapports isotopiques furent également determines pour des échantillons d'eau de source et de puits. Les rapports 18O/16O furent également mesurés sur du quartz, du plagioclase et de la biotite provenant des mêmes bentonites. Les smectites présentent deux groupes distincts de composition isotopique, ce qui exclut leur origine par altération des roches volcaniques aussi bien dans des conditions sousmarines que dans les conditions de surface. On peut expliquer le rapport isotopique par un processus de bentonisation dû à des fluides de basse température d'origine météorique. Les températures de formation sont estimées à 40 et 70°C respectivement pour les gisement de la Serrata de Nijar et la Sierra Gata.

Kurzreferat

Kurzreferat

In 22 abgetrennten Smectit-Proben aus Bentonit-Lagerstätten der Sierra de Gata und der Serrata de Nijar, Almeria, Spanien, wurden die Isotopenverhältnisse 18O/16O und 2H/1H bestimmt, ebenso an einigen Quellwässern. Weiterhin wurden an den Quarz-, Plagioklas- und Biotit-Fraktionen des Bentonits 18O/16O-Verhältnisse gemessen. Anhand der Isotopenverhältnisse konnten die Smectite in zwei ausgeprägte Gruppen unterteilt werden, für deren Herkunft sowohl submarine Verwitterung als auch Veränderungen vulkanischer Gesteine unter den normalen Bedingungen der Erdoberfläche ausgeschlossen werden. Dagegen könnten die gemessenen Isotopenverhältnisse durch einen Bildungsprozeß erklärt werden, der unter dem Einfluß von Niederschlagswasser bei etwa 40°C (Serrata de Nijar) bzw. ca. 70°C (Sierra de Gata) abläuft.

Resumen

Resumen

Se han determinado las relaciones isotópicas de oxigeno (18O/16O) y de hidrógeno (2H/1H) en veintidós muestras de esmectitas procedentes de los yacimientos de bentonita de Sierra de Gata y Serrata de Nijar, Almeria, España. Se midieron, asimismo estas relaciones isotópicas en algunas aguas procedentes de manantiales y pozos asi como en muestras de cuarzo, plagioclasa y biotita separadas de las bentonitas. Las esmectitas presentan dos composiciones isotópicas diferenciadas que excluyen como origen tanto una alteración submarina como una alteración condiciones normales en la superficie de las rocas volcánicas asociadas. Los contenidos de isótopos estables encontrados pueden ser explicados a través de un proceso de alteración producido por fluídos a baja temperatura de orígen meteórico. Los datos indican que las temperaturas de las que se formaron las arcillas son de ∼40°C y ∼70°C para los depósitos de la Serrata de Nijar y de la Sierra de Gata, respectivamente.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon, (1981) Statistical Treatment of Environmental Isotope Data in Precipitation. International Atomic Agency, Vienna, Tech. Rep. Series 206.Google Scholar
Bellon, H. & Brouse, R. (1977) Le magmatism pèrimediterranéen occidentale. Essai de Synthèse. Bull. Soc. Geol. Fr. 19, 469480.Google Scholar
Bellon, H. & Letouzey, J. (1977) Volcanism related to plate tectonics in the western and eastern Mediterranean. Pp. 165184 In: Int. Sym. Structural Hist. Mediterranean Basins (Biju-Duval, B. and Montadert, L., Editors). Ed. Tecnip., Paris.Google Scholar
Cortecci, G., Molcard, R. & Noto, P. (1974) Isotopic analysis of the deep structure in the Tyrrhenian sea. Nature 250, 134136.CrossRefGoogle Scholar
Clayton, R.N. & Mayeda, T.K. (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 27, 4352.CrossRefGoogle Scholar
Craig, H. (1961) Isotopic variations in meteoric waters. Science 133, 17021703.CrossRefGoogle ScholarPubMed
Craig, H. (1963) The isotopic geochemistry of water and carbon in geothermal areas. Pp. 1753 in: Nuclear Geology in Geothermal Areas, Spoleto (Tongiorgi, E., editor). Laboratorio di Geologia Nucleare, Pisa, Italy.Google Scholar
Craig, H. & Gordon, L. (1965) Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. Pp. 9130 in: Stable Isotopes in Oceanographic Studies and Paleotemperatures, Spoleto (Tongiorgi, E., editor). Laboratorio di Geologia Nucleare, Pisa, Italy.Google Scholar
Dansgaard, W. (1964) Stable isotopes in precipitation. Tellus 16, 436468.CrossRefGoogle Scholar
Eicher, U. & Siegenthaler, U. (1976) Palynological and oxygen isotope investigation on Late Glacial sediment cores from Swiss lakes. Boreas 5, 109117.Google Scholar
Fontes, J.Ch., Letolle, R. & Marcé, A. (1965) Some results of oxygen isotope studies of marine waters. Pp. 131141 in: Stable Isotopes in Oceanographic Studies and Paleotemperatures, Spoleto (Tongiorgi, E., editor). Laboratorio di Geologia Nucleare, Pisa, Italy.Google Scholar
Godfrey, J.O. (1962) The deuterium content of hydrous minerals from the east-central Sierra Nevada and Yosemite National Park. Geochim. Cosmochim. Acta 26, 12151245.CrossRefGoogle Scholar
Gonfiantini, R. (1965) Effetti isotopici nella evaporazione di acque salate. Atti Soc. Toscana Sc. Nat. 72, 322.Google Scholar
Gonfiantini, R. (1978) Standards for stable isotope measurements in natural compounds. Nature 271, 534536.CrossRefGoogle Scholar
Gonzalez-Garcia, F. & Martin-Vivaldi, J.L. (1949) Caracterizacion y propiedades de una bentonita de Almeria. Anal. Edaf. 8, 567582.Google Scholar
Hemley, J.J., Meyer, C. & Richter, D.H. (1961) Some alteration reactions in the system: Na2O- Al2O3-SiO2-H2O. U.S. Geol. Surv. Prof. Paper 424, 338340.Google Scholar
Hsü, K., Montadert, L., Bernoulli, D., Cita, M.B., Erickson, A., Garrison, R.E., Kidd, R.B., Mélieres, F., Muller, C. & Wright, R. (1978) History of the Mediterranean salinity crisis. Pp. 10531078 in: Initial Reports of the Deep Sea Drilling Project 42, 1. Washington (U.S. Government Printing Office).Google Scholar
Iijima, A. & Utada, M. (1971) Present-day zeolitic diagenesis of the Neogene geosynclinal deposits in the Niigata oil field, Japan. Pp. 342349 in: Molecular Sieves and Zeolities, I. Adv. Chem. Series 101.CrossRefGoogle Scholar
Lawrence, J.R. & Taylor, H.P. (1971) Deuterium and oxygen-18 correlation: clay minerals and hydroxides in Quaternary soils compared to meteoric waters. Geochim. Cosmochim. Acta 35, 9931003.Google Scholar
Lawrence, J.R., Dreuer, J.I., Anderson, T.F. & Brueckner, H.K. (1979) Importance of alteration of volcanic material in the sediments of Deep Sea Drilling Site 323: chemistry, 18O/16O and 87Sr/86Sr. Geochim. Cosmochim. Acta 43, 573588.Google Scholar
Linares, J., Huertas, F., Lachica, M. & Reyes, E. (1972) Geochemistry of trace elements during the genesis of coloured bentonites. Proc. Int. Clay Conf. Madrid, 351360.Google Scholar
Linares, J., Reyes, E. & Barahona, E. (1978) Mineralogia y geoquimica de las bentonites de la zone norte de Cabo de Gata (Almeria); I-Estudio preliminar. Estud. Geol. 34, 263268.Google Scholar
Longinelli, A. (1980) Isotope geochemistry of some Messinian evaporites: paleoenvironmental implications. Palaeogeogr., Palaeoclimat., Palaeoecol. 29, 95123.CrossRefGoogle Scholar
Lombardi, G. & Sheppard, S.M. (1977) Petrographic and isotopic studies of the altered acid volcanics of the Tolfa-Cerite area, Italy: the genesis of the clays. Clay Miner. 12, 147161.CrossRefGoogle Scholar
Lopez-Ruiz, J. & Rodriguez-Badiola, E. (1980) La región volcánica neógena del sureste de España. Estud. Geol. 36, 563.Google Scholar
Matsubaya, O. & Sakai, H. (1978) D/H and 18O/16O fractionation factors in evaporation of water at 60°C and 80°C. Geochem. J. 12, 121126.CrossRefGoogle Scholar
Matsuhisa, Y. & Togashi, Y. (1979) Oxygen, hydrogen and carbon isotopic study of the Amakusa pottery stone deposits in altered rhyolite dikes, Kyushu, southwest Japan. Geochem. J. 13, 173179.CrossRefGoogle Scholar
McCrea, J.M. (1950) On the isotope chemistry of carbonates and paleotemperature scale. J. Chem. Phys. 18, 849857.CrossRefGoogle Scholar
O'Neil, J.R., Adami, L.H. & Epstein, S. (1975) Revised value for the 18O fractionation between CO2 and water at 25°C. U.S. Geol. Survey J. Res. 3, 623624.Google Scholar
Reyes, E. (1977) Mineralogia y geoquimica de las bentonitas de la zone norte del Cabo de Gata (Almeria). PhD thesis, Univ. Granada, Spain.Google Scholar
Reyes, E., Huertas, F. & Linares, J. (1980) Mineralogia y geoquimica de las bentonitas de la zone norte del Cabo de Gata (Almeria). Tecniterrae 33, 613. and 35,7-16.Google Scholar
Savin, S.M. & Epstein, S. (1970) The oxygen and hydrogen isotope geochemistry of clay minerals. Geochim. Cosmochim. Acta 34, 2542.Google Scholar
Savin, S.M. (1980) Oxygen and hydrogen isotope effects in low temperature mineral-water interactions. Pp. 283327 in: Handbook of Environmental Isotope Geochemistry, 1, The Terrestrial Environment, A (Fritz, P. and Fontes, J. Ch., editors). Elsevier, Amsterdam.Google Scholar
Shackleton, N.J. (1967) Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature 215, 1517.CrossRefGoogle Scholar
Siegenthaler, U. (1979) Stable hydrogen and oxygen isotopes in the water cycle. Pp. 264273 in: Lectures in Isotope Geology (Jäger, E. and Hunziker, J. C., editors). Springer-Verlag, Berlin.CrossRefGoogle Scholar
Sofer, Z. & Gat, J.A. (1975) The isotope composition of evaporating brines: effect of the isotopic activity in saline solutions. Earth Planet. Sci. Lett. 26, 179186.Google Scholar
Taylor, H.P. (1968) The oxygen isotope geochemistry of igneous rocks. Contrib. Mineral. Petrol. 19, 171.CrossRefGoogle Scholar
Taylor, H.P. (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 69, 843883.Google Scholar
Taylor, H.P. (1979) Oxygen and hydrogen isotope relationship in hydrothermal mineral deposits. Pp. 236277 in: Geochemistry of Hydrothermal Ore Deposits, 2nd edition (Barnes, H. L., editor). Wiley and Sons, New York.Google Scholar
Vergnaud-Grazzini, C. (1975) 18O changes in foraminifera carbonates during the last 105 years in the Mediterranean Sea. Science 190, 272274.CrossRefGoogle Scholar
Walter, H., Harnickell, E. & Mueller-Dombois, D. (1975) Climate-Diagram Maps (see map no. 7). Springer-Verlag, Berlin.CrossRefGoogle Scholar
Yeh, H.W. & Savin, S.M. (1977) Mechanism of burial metamorphism of argillaceous sediments: 3. O-isotope evidence. Geol. Soc. Am. Bull. 88, 13211330.2.0.CO;2>CrossRefGoogle Scholar
Yeh, H.W. & Epstein, S. (1978) Hydrogen isotope exchange between clay minerals and sea water. Geochim. Cosmochim. Acta 42, 140143.CrossRefGoogle Scholar
Yeh, H.W. (1980) D/H ratios and late-stage dehydration of shales during burial. Geochim. Cosmochim. Acta 44, 341352.CrossRefGoogle Scholar