Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T13:07:09.880Z Has data issue: false hasContentIssue false

First Data on Clay Mineral Assemblages and Geochemical Characteristics of Toarcian Sedimentation in the umbriamarche basin (central italy)

Published online by Cambridge University Press:  09 July 2018

M. Ortega-Huertas
Affiliation:
Departamento de Mineralogia y Petrologia, 1AGM, Universidad de Granada, Spain and
P. Monaco
Affiliation:
Departamento de Mineralogia y Petrologia, 1AGM, Universidad de Granada, Spain and
I. Palomo
Affiliation:
Departamento de Mineralogia y Petrologia, 1AGM, Universidad de Granada, Spain and

Abstract

A moderate to high rate of clay sedimentation is characteristic of the Toarcian sequences in the Umbria-Marche basin. The clay mineral assemblages and geochemical characteristics indicate that the Marne di Monte Serrone Formation and the Rosso Ammonitico Umbro-Marchigiano Unit were deposited in a shallow marine environment. In this general palaeogeographic scheme, a reducing subenvironment must have exsisted in which black shale-type facies were deposited resulting in geochemical anomalies in As, Sb, Zn, Co, Cu, Pb, V, Cr, and Ba, among other elements. The high values of both the detrital index and the Ce/Ce* ratio reveal the influence of proximal emerged reliefs. It is suggested that the palaeosoils that developed on the Liassic carbonate Laziale-Abuzzese platform were the source area of these sediments, following a palaeogeographic scheme analogous to that proposed for the Betic Cordilleras (Spain) during the Middle Domerian to Middle Toarcian. The positive and negative Eu anomalies are due to the decisive influence of the weathering process in which sediments with heterogeneous Eu anomaly size were mixed. The final distribution pattern of REE is the result of the different environments to which the clay minerals were subjected and the differences in intensity of weathering.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barahona, E. (1974) Arcillas de ladrillerta de la provincia de Granada: evaluacion de algunos ensayos de materias primas. PhD thesis, Univ. Granada, Spain.Google Scholar
Bartolini, A., Nocchi, M., Baldanza, A. & Parisi, G. (1992) Benthic life during the early Toarcian anoxic event in the southwestern Tethyan Umbria-Marche Basin, Central Italy. Benthos'90. Int. Congr., Sendai, Japan (in press).Google Scholar
Cantaluppi, G. (1970) Le Hildoceratidae del Lias Medio delle Regioni Mediterranee. Mem. Soc. It. Sc. Nat. 191, 716.Google Scholar
Carbone, F. (1984) Evoluzione tettonico-sedimentaria delle Unitá carbonatiche Centroappenniniche durante il Meso-Cenozoico. CNR (Rapport Interno). Google Scholar
Cecca, F., Cresta, S., Pallini, G. & Santantonio, M. (1990) II Giurassico de Monte Nerone (Appennino Marchigiano, Italia Centrāle): biostratigrafia litostratigrafia ed evoluzione paleogeografica. Atti II Conv. Int. F.E.A., Pergola, 63139.Google Scholar
Centamore, E., Chiocchini, M., Deiona, G., Micarelli, A. & Pieruccini, U. (1971) Contributo alia conogcenza del Giurassico dell’Appennino Umbro-Marchigiano. Studi Geol. Comerti, 1, 789.Google Scholar
Channell, J.E.T., D’Argenio, R. & Horvath, F. (1979) Adria, the African Promotory, in Mesozoic Mediterranean paleogeography. Earth Sci. Rev. 15, 213292.CrossRefGoogle Scholar
Colacicchi, R. (1967) Geologia della Marigica orientale. Geologia Romana, 6, 189316.Google Scholar
Colacicchi, R. (1987) Sedimentation on a carbonate platform as controlled by sea level changes and tectonic movements. Mem. Soc. Geol. Ital. 40, 199208.Google Scholar
Colacicchi, R., Passeri, L. & Pialu, G. (1970) Nuovi dati sul Giurese Umbro-Marchigiano ed ipotesi per un suo inquadramento regionale. Mem. Soc. Geol. Ital. 9, 839874.Google Scholar
Colacicchi, R., Nocchi, M., Parisi, G., Monaco, P., Baldanza, A., Cresta, S. & Pallini, G. (1988) Palaeoenvironmental analysis from Lias to Malm (Corniola to Maiolica Formations) in the Umbria-Marche basin, Central Italy (preliminary report). 2nd Int. Sym. Jurassic Stratigraphy, Lisboa, 2, 717728.Google Scholar
Courtois, C.H., & Hoffert, M. (1979) Distribution des terres rares dans les sédiments superficiels du Pacifique sud- est. Bull. Soc. Geol. Fr. 19, 12451251.Google Scholar
Cresta, S., Cecca, F., Santantonio, M., Pallini, G., Bronnimann, P., Baldanza, A., Colacicchi, R., Monaco, P., Nocchi, M., Parisi, G. & Venturi, F. (1988) Stratigraphic correlations in the Jurassic of the Umbria-Marche Apennines (Central Italy). 2nd Int. Sym. Jurassic Stratigraphy, Lisboa, 2, 729744.Google Scholar
Cresta, S., Monechi, S. & Paris, G. (1989) Statigrafia del Mesozoico e Cenozoic nell, area Umbro-Marchigiana. Itinerari geologici sull’Appennino Umbro-Marchigiano (Italia). Mem. Descr. Carta Geol. d ’ltServ. Geol. d ’lt. 39.Google Scholar
Cullers, R.L., Chaudhuri, S., Arnold, B., Lee, M. & Wolf, C.W. (1975) Rare earth distribution in clay minerals and in the clay-sized fraction of the lower Permian Havensville and Eskridge shales of Kansas and Oklahoma. Geochim. Cosmochim. Acta, 39, 16911703.Google Scholar
Farinacci, A., Mariotti, N., Nicosia, U., Pallini, G. & Schiavinotto, F. (1981) Jurassic sediments in the Umbro- Marchean Apennines: an alternative model. Pp. 335-398 in: Rosso Ammonitico Symposium (A. Farinacci & S. Elmi, editors). Tecnoscienza, Roma.Google Scholar
Farinacci, A. & Elmi, S. (1981) Proc. Rosso Ammonitico Sym. Google Scholar
Hallam, A. (1988) A reevaluation of Jurassic eustasy in the light of new data and the revised Exxon curves. Pp. 261— 273 in: Sea-Level Changes. An Integrated Approach. SEPM, Spec. Publ. 42.CrossRefGoogle Scholar
Jenkyns, H.C. (1980) Tethys: past and present. Proc. Geol. Assoc. 91, 107118.Google Scholar
Jenkins, H.C. (1988) The early Toarcian (Jurassic) anoxic event: stratigraphic, sedimentary and geochemicalevidence. Am. J. Sci. 288, 101151.Google Scholar
Jenkins, H.C. & Clayton, C.J. (1986) Black shales and carbon isotopes in pelagic sediments from Tethyan Lower Jurassic. Sedimentology, 33, 87106.CrossRefGoogle Scholar
MacLennan, S.M. (1989) Rare Elements in sedimentary rocks: Influence of provenance and sedimentary processes. Pp. 169-200 in: Geochemistry and Mineralogy of Rare Earth Elements (B.R. Lipin & G.A. McKay, editors). Mineralogical Society of America, Reviews in Mineralogy, 21.Google Scholar
Monaco, P. (1989) La sedimentazione biodetritica nel bacino Umbro sud-orientale durante il Paleogene. Mem. Soc. Geol. Padova, 41, 191253.Google Scholar
Monaco, P. (1992) Hummocky cross-stratified deposits in some shelf sequences of Umbria-Marche area (Central Italy) during the Toarcian (early Jurassic). Sed. Geol. 77, 123142.Google Scholar
Ortega Huertas, M., Palomo, I. & Martinez Rui'z F. (1991a) Illite and smectite AEM data. Evidence of inherited and diagenetic processes. Proc. 7th Euroclay Conf. Dresden, 3, 815820.Google Scholar
Ortega Huertas, M., Palomo, L., Moresi, M. & Oddone, M. (1991b) A mineralogical and geochemical approach to establishing a sedimentary model in a passive margin (Subbetic Zone, Betic Cordilleras, SE Spain). Clay Miner. 26, 389107.Google Scholar
Palomo, I. (1987) Mineralogia y geoquimica de sedimentos peldgicos del Jurdsico inferior de las Cordilleras Beticas (SE de Espana). PhD thesis, Univ. Granada, Spain.Google Scholar
Pialli, G. (1969) Un episodio marnoso del Lias superiore nel bacino Umbro-Marchigiano: le Marne del Monte Serrone. Boll. Soc. Natur. Napoli, 78, 323.Google Scholar
Pollastro, R.M. (1985) Mineralogical and morphological evidence for the formation of illite at the expense of illite/ smectite. Clays Clay Miner. 34, 265274.Google Scholar
Praturlon, A. (1968) Cycadophyta and Coniferophyta from the Lias of M. Palombo (Marsica, Central Apennines). Geologica Romana, 7, 126.Google Scholar
Ronov, A.B., Balashov, Y.A. & Migdisov, A.A. (1967) Geochemistry of the rare earths in the sedimentary cycle. Geochem. Int. 4, 117.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical compositions from X-ray and chemical data for the Pierre Shale. U.S. Geol. Surv. Prof. Pap. 391-C, 131.Google Scholar
Venturi, F. (1990) Origine ed evoluzione di Ammoniti Hammatoceratinae nel Toarciano Umbro-Marchigiano. 3rd Int. Symp. “Fossili, Evoluzione e Ambiente", 1415.Google Scholar
Vera, J.A. (1981) Correlation entre las Cordilleras Beticas y otras Cordilleras Alpinas durante el Mesozoico.P.I.C.G. Real Acad. Ciencias Exactas, Fisicas y Naturales. Madrid, 2, 125160.Google Scholar
Vera, J.A., Palomo, I. & Ortega Huertas, M. (1989) Influencia del paleokarst en la mineralogia de arcillas del Lias de Algarinejo (Subbētico Medio). Geogaceta, 6, 1619.Google Scholar