Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-14T05:18:22.751Z Has data issue: false hasContentIssue false

Experimental synthesis of chlorite from smectite at 300ºC in the presence of metallic Fe

Published online by Cambridge University Press:  09 July 2018

D. Guillaume*
Affiliation:
Géologie et Gestion des Ressources Minérales et Energétiques (G2R), UMR 7566 CNRS-CREGU-INPL-UHP, Université Henri Poincaré, BP 239, 54506 Vandoeuvre-lès-Nancy
A. Neaman
Affiliation:
Laboratoire Environnement et Minéralurgie (LEM), UMR 7569 CNRS-INPL, Ecole Nationale Supérieure de Géologie, BP 40, 54501 Vandoeuvre-lès-Nancy
M. Cathelineau
Affiliation:
Géologie et Gestion des Ressources Minérales et Energétiques (G2R), UMR 7566 CNRS-CREGU-INPL-UHP, Université Henri Poincaré, BP 239, 54506 Vandoeuvre-lès-Nancy
R. Mosser-Ruck
Affiliation:
Géologie et Gestion des Ressources Minérales et Energétiques (G2R), UMR 7566 CNRS-CREGU-INPL-UHP, Université Henri Poincaré, BP 239, 54506 Vandoeuvre-lès-Nancy
C. Peiffert
Affiliation:
Géologie et Gestion des Ressources Minérales et Energétiques (G2R), UMR 7566 CNRS-CREGU-INPL-UHP, Université Henri Poincaré, BP 239, 54506 Vandoeuvre-lès-Nancy
M. Abdelmoula
Affiliation:
Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564 CNRS-UHP, Université Henri Poincaré, 405 rue de Vandoeuvre, 54600 Villers-lès-Nancy
J . Dubessy
Affiliation:
Géologie et Gestion des Ressources Minérales et Energétiques (G2R), UMR 7566 CNRS-CREGU-INPL-UHP, Université Henri Poincaré, BP 239, 54506 Vandoeuvre-lès-Nancy
F. Villiéras
Affiliation:
Laboratoire Environnement et Minéralurgie (LEM), UMR 7569 CNRS-INPL, Ecole Nationale Supérieure de Géologie, BP 40, 54501 Vandoeuvre-lès-Nancy
A. Baronnet
Affiliation:
Centre deRecherche sur lesMécanismes de Croissance CristallineCRMC2-CNRS, Campus Luminy, case 913, 13288, Marseille
N. Michau
Affiliation:
Agence nationalepour la gestion des déchets radioactifs(ANDRA), Direction Scientifique/ServiceMatériaux, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry, France
*

Abstract

The alteration and transformation behaviour of montmorillonite (bentonite from Wyoming, MX-80) in low-salinity solutions (NaCl, CaCl2) in the presence of metallic Fe (powder and 86461 mm plate) and magnetite powder was studied in batch experiments at 300ºC to simulate the mineralogical and chemical reactions of clays in contact with steel in a nuclear waste repository. The evolutions of pH and solution concentrations were measured over a period of 9 months. The mineralogical and chemical evolution of the clays was studied by XRD, SEM, Transmission Mössbauer Spectroscopy and TEM (EDS, HR imaging and EELS). Dissolution of the di-octahedral smectite of the starting bentonite was observed, in favour of newly formed clays (chlorite and saponite), quartz, feldspars and zeolite. The formation of Fe-chlorite was triggered by contact with the metallic Fe plate and Fe-Mg-chlorite at distance from the Fe plate (>2 mm).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, P., Jahren, J.S., Harstad, A.O., Nilsen, O. & Ramm, M. (2000) Formation of grain-coating chlorite in sandstones. Laboratory synthesized vs. natural occurrences. Clay Minerals, 35, 261269.Google Scholar
Alt, J.C., Honnorez, J., Laverne, C. & Emmermann, R. (1986) Hydrothermal alteration of 1 km section through the upper oceanic crust, DSDP Hole 504B: Mineralogy, chemistry and evolution of seawaterbasalt interaction. Journal of Geophysical Research, 91, 1030910335.CrossRefGoogle Scholar
Amouric, M. & Olives, J. (1991) Illitization of smectite as seen by high-resolution transmission electron microscopy. European Journal of Mineralog y, 3, 831835.CrossRefGoogle Scholar
Beaufort, D., Baronnet, A., Lanson, B. & Meunier, A. (1997) Corrensite: a single phase or a mixed layered phyllosilicate of the saponite-clorite conversion series? The case study of the Sancerre-Couy deep drill-hole (France). American Mineralogist, 82, 109124.CrossRefGoogle Scholar
Benali, O., Abdelmoula, M., Refait, P. & Génin, J.M. (2001) Effect of orthophosphate on the oxidation products of Fe(II)-Fe(III) hydroxycarbonate: the transformation of green rust to ferrihydrite. Geochimica et Cosmochimica Acta, 65, 17151726.CrossRefGoogle Scholar
Bettison, L. & Schiffman, P. (1988) Compositional and structural variations of phyllosilicates from the Point Sal ophiolite, California. American Mineralogist, 73, 6276.Google Scholar
Bettison-Varga, L. & Mackinnon, I.D.R. (1997) The role of randomly mixed-layered chlorite/smectite in the transformation of smectite to chlorite. Clays and Clay Minerals, 45, 506516.CrossRefGoogle Scholar
Bevins, R.E., Robinson, D. & Rowbotham, G. (1991) Compositional variations in mafic phyllosilicates from regional low-grade metabasites and application of the chlorit e geothermometer. Journal of Metamorphic Geology, 9, 711721.CrossRefGoogle Scholar
Bowers, T.S., Jackson, K.J. & Helgeson, H.C. (1984) Equilibrium Activity Diagrams for Coexisting Minerals and Aqueous Solutions at Pressures and Temperatures to 5 kb and 600ºC. Springer-Verlag, Berlin.Google Scholar
Bystrüm-Brusewitz, A.M. (1975) Studies of the Li test to distingui sh be idel li te and montmori llonit e. Proceedings of the International Clay Conference, Mexico City, pp. Pp. 419428, Applied Publishing Ltd., Wilmette, Illinois, USA.Google Scholar
Cathelineau, M. & Izquierdo, G. (1988) Temperaturecomposition relationships of authigenic micaceous minerals in the Los Azufres geothermal system. Contributions to Mineralogy and Petrology, 100, 418428.CrossRefGoogle Scholar
Cathelineau, M., Oliver, R., Nieva, D. & Garfias, A. (1985) Mineralogy and distribution of hydrothermal mineral zones in Los Azufres (Mexico) geothermal field. Geothermics, 14, 4957.CrossRefGoogle Scholar
Cathelineau, M., Mosser-Ruck, R. & Charpentier, D. (2001) Interactions fluides/argilites en conditions de stockage profond des déchets nucléaires. Intérêt du couplage expérimentation/modélisation dans la compréhension des mécanismes de transformation des argiles et la prédiction à long terme du comportement de la barrière argileuse. Pp. 305341 in: Actes des Journées Scientifiques ANDRA, EDP Sciences Nancy, France.Google Scholar
Chang, H.K., Mackenzie, F.T. & Schoonmaker, J. (1986) Comparison between the diagenesis of dioctahedral and trioctahedral smectite, Brasilian offshore basins. Clays and Clay Minerals, 34, 407423.CrossRefGoogle Scholar
Cuadros, J. & Linares, J. (1996) Experimental kinetic study of the smectite-to-illite transforma tion. Geochimica et Cosmochimica Acta, 60, 439453. Eberl, D. (1978) Series for dioctahedral smectites. Clays and Clay Minerals, 26, 327340.Google Scholar
Eberl, D. & Hower, J. (1977) The hydrothermal transformation of sodium and potassium smectite into mixed-layer clay. Clays and Clay Minerals, 25, 215227.CrossRefGoogle Scholar
Eberl, D., Velde, B. & McCormick, T. (1993) Synthesis of illite-smectite from smectite at earth surface temperatures and high pH. Clay Minerals, 28, 4960.CrossRefGoogle Scholar
Egerton, R.F. (1986. Electron Energy-loss Spectroscopy in the Electron Microscope. Plenum, New York.Google Scholar
Gillery, F.H. (1959) The X-ray study of synthetic Mg-Al serpentines and chlorites. American Mineralogist, 44, 143152.Google Scholar
Greene-Kelly, R. (1953) The identification of montmorillonoids in clays. Journal of Soil Science, 4, 233237.CrossRefGoogle Scholar
Guillaume, D., Neaman, A., Mosser-Ruck, R., Dubessy, J., Cathelineau, M. & Villiéras, F. (2001a) Experimental study of hydrothermal reactivity of bentonite at 80 and 300ºC in the presence of iron and/or iron oxides. Beri chte der De utsch en Mineralogische n Gesellshaft, Beihefte zum European Journal of Mineralogy, 13, 69 pp.Google Scholar
Guillaume, D., Pironon, J. & Ghanbaja, J. (2001b) Valence determination of iron in clays by electron energy loss spectroscopy. Berichte der Deutschen Mineralogischen Gesellshaft, Beihefte zum European Journal of Mineralogy, 13, 70 pp.Google Scholar
Helmold, K.P. & van de Kamp, P.C. (1984) Diagenetic mineralogy and controls on albitization and laumontite formation in Paleogene arkoses, Santa Ynez Mountains, California. Pp. 239276 in: Clastic Diagenesis(McDonald, D.D. & Surdam, R.C., editors). American Associati on of Petroleum Geologists Memoir 37.Google Scholar
Hoffman, U. & Klemen, E. (1950) Loss of exchangeability of lithium ions in bentonites on heating. Zeitschrift für Anorgani sche und Allgemeine Chemie, 262, 9599.Google Scholar
Hoffmann, J. & Hower, J. (1979) Clay mineral assemblages as low grade metamorphic geothermometers: Application to the thrust-faulted disturbed belt of Montana, USA. Society of Economic Paleontologists and Mineralogists Special Publication, 26, 5579.Google Scholar
Horton, D.G. (1985) Mixed-layer illite/smectite as a paleotemperature indicator in the Amethyst vein system, Creed district, Colorado, USA. Contributions to Mineralogy and Petrology, 91, 171179.CrossRefGoogle Scholar
Humphreys, B., Kemp, S.J., Lott, G.K., Bermanto Dharmayanti, D.A. & Samsori, I. (1994) Origin of grain-coating chlorite by smectite transformation: an example from Miocene sandstones, North Sumatra Back-Arc Basin, Indonesia. Clay Minerals, 29, 681692.CrossRefGoogle Scholar
Iijima, A. & Matsumoto, R. (1982) Berthierine and chamosite in coal measures of Japan. Clays and Clay Minerals, 30, 264274.CrossRefGoogle Scholar
Inoue, A. (1983) Potassium fixation by clay minerals during hydrothermal treatment. Clays and Clay Minerals, 31, 8191.CrossRefGoogle Scholar
Inoue, A. (1987) Conversion of smectite to chlorite by hydrothermal diagenetic alterations, Hokuroku Kuroko mineraliza tion area, Northeast Japan. Proceedings of the International Clay Conference, Denver, pp. 158164. The Clay Minerals Society, Bloomington, Indiana, USA.Google Scholar
Inoue, A. & Utada, M. (1991) Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, North Honshu, Japan. American Mineralogist, 76, 628640.Google Scholar
Inoue, A., Utada, M., Nagata, H. & Watanabe, T. (1984) Conversion of trioctahedral smectite to interstratified chlorite/smectite in Pliocene acidic pyroclastic sediments of the Ohyu district, Akita Prefecture, Japan. Clay Science, 6, 103106.Google Scholar
Lagaly, G., Fernandez Gonzalez, M. & Weiss, A. (1976) Problems in layer-charge determination of montmorillonites. Clay Minerals, 11, 173187.CrossRefGoogle Scholar
Madsen, F.T. (1998) Clay mineralogical investigations related to nuclear waste disposal. Clay Minerals, 33, 109129.CrossRefGoogle Scholar
Meunier, A., Inoue, A. & Beaufort, D. (1991) Chemiographic analysis of trioctahedral smectiteto- chlorite conversion series from the Ohyu Caldera, Japan. Clays and Clay Minerals, 39, 409415.CrossRefGoogle Scholar
Mosser-Ruck, R., Pironon, J., Cathelineau, M. & Trouiller, A. (2001) Experimental illitization of smectite in a K-rich solution. European Journal of Mineralogy, 13, 829840.CrossRefGoogle Scholar
Müller-Vonmoos, M., Kahr, G., Bucher, F., Madsen, F.T. & Mayor, P.A. (1991) Untersuchungen zum Verhalten von Bentonit in kontakt mit Magnetit und Eisen unter Endlagerbedingungen. NTB 91-14. Nagra, Hardstr asse 73, CH-5430 Wettingen, Switzerland.Google Scholar
Murad, E. (1998) Clays and clay minerals: What can Müssbauer spectroscopy do to help understand them. Hyperfine Interactions, 117, 3970.CrossRefGoogle Scholar
Murakami, T., Sato, T. & Inoue, A. (1999) HRTEM evidence for the process and mechanism of saponiteto- chlorite conversion through corrensite. American Mineralogist, 84, 10801087.CrossRefGoogle Scholar
Newman, A.C.D., editor (1987) Chemistry of Clays and Clay Minerals. Monograph 6. Mineralogical Society, London.Google Scholar
Robinson, D. & Santana de Zamora, A. (1999) The smectite to chlorite transition in the Chipilapa geothermal system, El Salvado r. American Mineralogist, 78, 607619.CrossRefGoogle Scholar
Robinson, D., Schmidt, S.Th. & Santana de Zamora, A. (2002) Reaction pathways and reaction progress for the smectite-to-chlorite transformation: evidence from hydrothermally altered metabasites. Journal of Metamorphic Geology, 20, 167174.CrossRefGoogle Scholar
Schiffman, P. & Fridleifsson, G.O. (1991) The smectitechlorite transition in drillhole Nj-15, Nesjavellir geothermal field, Iceland: XRD, BSE, and Electron Microprobe Investigations. Journal of Metamorphic Geology, 9, 679696.CrossRefGoogle Scholar
Schiffman, P. & Staudigel, H. (1995) The smectite to chlorite transition in a fossil seamount hydrothermal system: the basement complex of La Palma, Canary Islands. Journal of Metamorphic Geology, 13, 487498.CrossRefGoogle Scholar
Small, J.S., Hamilton, D.L. & Habesch, S. (1992) Experimental simulation of clay precipitation within reservoir sandstones 1: Techniques and examples. Journal of Sedimentary Petrology, 62, 508519.CrossRefGoogle Scholar
Vali, H. & Hesse, R. (1990) Alkylammonium ion treatment of clay minerals in ultrathin section: A new method for HRTEM examination of expandable layers. American Mineralogist, 75, 14431446.Google Scholar
Velde, B. (1973) Phase equilibria studies in the system MgO-AlO-SiO-UO: chlorite and associated minerals. Mineralogical Magazine, 39, 297312.CrossRefGoogle Scholar
Velde, B., Raoult, J.-F. & Leikine, M. (1975) Metamorphos ed berthi er ine pellet s in mid- Cretaceous rocks from northeas tern Algeria. Journal of Sedimentary Petrology, 39, 12751280.Google Scholar
Wolery, T.J. (1992) EQ3NR, a computer program for geochemical aqueous speciation solubility calculations: theoretical manual, user's guide and related documentation(Version 7.0). UCRL-MA-110662- PT-III, Laurence Livermore National Laboratory, Livermore, California.Google Scholar
Wolery, T.J. & Daveler, S.A. (1992) EQ6, a computer program for reaction path modeling of aqueous geochemical systems: theoretical manual, user's guide and related documentation(Version 7.0). UCRL-MA-110662-PT-IV, Laurence Livermore National Laboratory, Livermore, California.Google Scholar