Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T01:01:04.807Z Has data issue: false hasContentIssue false

Evidence of Ostwald ripening related recrystallization of diagenetic chlorites from reservoir rocks offshore Norway

Published online by Cambridge University Press:  09 July 2018

J. S. Jahren*
Affiliation:
Department of Geology, University of Oslo, PO Box 1047 Blindern, 0316 Oslo 3, Norway

Abstract

Chemical variations in individual chlorite crystals of diagenetic origin delineated by energy dispersive X-ray spectroscopy (EDS) in a transmission electron microscope (TEM) indicate a temperature dependent chemical zonation in each grain. Silicon decreases and Al increases with higher temperature resulting in a decreasing Si/Al ratio away from the crystal core reflecting the time and rate of the crystal growth. Chlorite particle-size distributions obtained by scanning electron microscopy (SEM) give steady state profiles which suggests that the chlorite growth is controlled by a grain coarsening process related to Ostwald ripening.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ardell, A. J. (1972) The effect of volume fraction on particle coarsening: Theoretical considerations. Acta. Met., 20, 61–71.Google Scholar
Baronnet, A. (1982) Ostwald ripening: The case of calcite and mica. Estudios Geologie, 38, 185–198.Google Scholar
Bigelow, S.L. & Trimble, H.M. (1927) The relation of vapour pressure to particle size/. Phys. Chem., 31, 17981816.CrossRefGoogle Scholar
Bjørlykke, K., Aagaard, P., Dypvik, H., Hastings, D.S. & Harper, A.S. (1986) Diagenesis and reservoir properties of Jurassic sandstones from the Haltenbanken area, offshore mid Norway. Pp. 275286 in: Habitat of Hydrocarbons on the Norwegian Continental Shelf (AM. Spencer etal., editors) Graham & Trotman, London.Google Scholar
Bjørlykke, K., Mo, A. & Palm, E. (1988) Modelling of thermal convection in sedimentary basins and its relevance to diagenetic reactions. Mar. Petrol Geol, 5, 338–350.CrossRefGoogle Scholar
Burton, W.K., Cabrera N, & Frank, F.C. (1951) The growth of crystals and equilibrium structure of their surface. Phil. Trans. A 243, 299358.Google Scholar
Cathelineau, M. & Nivea, D. (1985) A chlorite solid solution geothermometer. The Los Azufres geothermal system (Mexico). Contrib. Mineral. Pet., 91, 235–244.CrossRefGoogle Scholar
Cathelineau, M. (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner., 23, 471–485.CrossRefGoogle Scholar
Chai, B.H.T. (1974) Mass transfer of calcite during hydrothermal crystallization. Pp. 205218 in: Geochemical Transport and Kinetics(Hoffmann, A.W. & Giletti, B. J., editors). Carnegie Institute, Washington, DC. Google Scholar
Eberl, D.D. & Środoń, J. (1988) Ostwald ripening and interparticle-diffraction effects for illite crystals. Am. Miner., 73, 1335–1345.Google Scholar
Eberl, D.D., Środoń, J., Kralik, M., Taylor, B.E. & Peterman, Z.E. (1990) Ostwald ripening of clays and metamorphic minerals. Science,, 248, 474477.CrossRefGoogle Scholar
Exner, H.E. & Lukas, H.L. (1971) The experimental verification of the stationary Wagner-Lifshitz distribution of coarse particles. Metallography,, 4, 325–338.CrossRefGoogle Scholar
Greenwood, G.W. (1956) The growth of dispersed precipitates in solutions. Acta Mettallurgica, 4, 243–248.Google Scholar
Inoue, A., Velde, B., Meunier, A. & Touchard, G. (1988) Mechanism of illite formation during smectite-to-illite conversion in a hydrothermal system. Am. Miner., 73, 1325–1334.Google Scholar
Jahren, J.S. & Aagaard, P. (1989) Compositional variations in diagenetic chlorites and illites, and relationships with formation-water chemistry. Clay Miner., 24, 157–170.CrossRefGoogle Scholar
Kirchner, H.O.K. (1971) Coarsening of grain-boundary precipitates. Metallurgical Trans., 2, 2861–2864.CrossRefGoogle Scholar
Lifshitz, I.M. & Slyozov, V.V. (1961) The kinetics of precipitation fromsupersaturated solid solutions. Phys. Chem. Solids, 19, 35–50.Google Scholar
McDowell, D.S. & Elders, W.A. (1980) Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea Geothermal field, California, USA. Contrib. Mineral. Pet., 74, 293–310.CrossRefGoogle Scholar
Morse, J.W. & Casey, W.H. (1988) Ostwald processes and mineral paragenesis in sediments. Am. J. Sci., 288, 537–560.CrossRefGoogle Scholar
Ostwald, W. (1900) Uber die vermeintliche Isomerie des roten und gelben Quecksilberoxsyds und die Oberflachenspannung festter Korper. Z. Physikalishe Chemie, Stochiometrie Verwandschaftlehre, 43, 495503.CrossRefGoogle Scholar
Speight, M.V. (1968) Growth kinetics of grain-boundary precipitates. Acta Metallurgical, 16, 133–135.CrossRefGoogle Scholar
Sunagawa, I. (1984) Growth of crystals in nature. Pp. 63105 in: Material Science of the Earth's Interior (Sunagawa, I., editor). TERRAPUB, Tokyo.Google Scholar
Wagner, C. (1961) Theorie der Alterungen von Niederschlagen durch Umlosen (Ostwald-reifung). Z. Electrochemie,, 65, 581–591.Google Scholar
Walshe, J.L. (1986) A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems. Econ. Geol., 81, 681–703.CrossRefGoogle Scholar
Warren, B.E. & Averbach, B.L. (1950) The effect of cold-work distortion on X-ray patterns. J. Appl. Phys., 21, 595–599.CrossRefGoogle Scholar