Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T06:58:35.078Z Has data issue: false hasContentIssue false

Evidence of a Precursor in the Neoformation of Palygorskite — New Data by Analytical Electron Microscopy

Published online by Cambridge University Press:  09 July 2018

M. Suarez
Affiliation:
Departamento de Geología, Universidad de Salamanca, Spain
J. M. Martin Pozas
Affiliation:
Departamento de Geología, Universidad de Salamanca, Spain
M. Robert
Affiliation:
Departamento de Geología, Universidad de Salamanca, Spain
F. Elsass
Affiliation:
Departamento de Geología, Universidad de Salamanca, Spain

Abstract

The rocks of the palygorskite deposit at Bercimuel (Segovia, Spain) have been studied by transmission electron microscopy and microanalysis. These rocks correspond to the zone of convergence of two alluvial fan systems that have filled the small basin of the River Riaza and would originally have been composed of illite and quartz silts. Among the accumulations of palygorskite it is possible to observe surrounded particles of micromicas that have undergone dissolution and opening thereby giving rise to disordered illite-smectite mixed-layer clays. This process continued up to the individualization of structural relics formed of units of 1–5 layers. At the same time, the chemical composition was modified with a loss of K and Al and a relative increase in Si and Mg, progressively evolving towards the composition of palygorskite. The paleogeographic position of the deposits, and the climatic conditions (arid environment), appear to be the dominant factors in the neoformation of palygorskite by alteration of the original sediments. The basic mineralogical process could be referred to as ‘early diagenesis’ in the formation of calcretes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellanca, A., Calvo, J.P., Cenši, P., Neri, R. & Pozo, M. (1992) Recognition of lake-level changes in Miocene lacustrine units, Madrid Basin, Spain. Evidence from facies analysis, isotope geochemistry and clay mineralogy. Sed. Geology, 76, 135153.CrossRefGoogle Scholar
Caillere, S. & Henin, S. (1957) The sepiolite and palygorskite minerals. Ch. IX In: The Differential Thermal Investigation of Clays. (R.C. Mackenzie, editor.) Miner- alogical Society, London.Google Scholar
Duplay, J. (1988) Géochimie des argiles et géothermie des populations monominérales de particules. These Univ. Strasbourg, in Sci. Géol. Mem. 82.Google Scholar
Elsass, F. & Robert, M. (1992) Application of high resolution electron microscopy to soil clay origin and organization in a temperature climate. Geol. Carpathica, Series Clays, 2, 5561.Google Scholar
Fernandez, Macarro B., Armenteros, I. & Blanco, J.A. (1989) Procesos de alteracion y paleosuelos ligados a la sedimentacion miocena del N.E. de Segovia, Depresion del Duero. Acta Geol. Hisp, 23, 269281.Google Scholar
Galan, E. & Ferrero, A. (1982) Palygorskite-sepiolite clays of Lebrija, Southern Spain. Clays Clay Miner, 30, 191199.Google Scholar
Halitim, A., Robert, M. & Pedro, G. (1983) Etude experimentale de l’épigénie calcaire des silicates en milieu confiné. Caractérisation des conditions de son développement et des modalités de sa mise en jeu. Sci. Geol., Mem, 71, 6373.Google Scholar
Isphording, W.C. (1973) Discussion of the occurrence and origin of sedimentary palygorskite-sepiolite deposits. Clays Clay Miner, 21, 391–101.CrossRefGoogle Scholar
Lopez Aguayo, F. & Caballero, M.A. (1973) Los minerales de la arcilla y su contribucion a la diferenciacion de facies sedimentarias. Estudios Geol, 29, 131143.Google Scholar
Martin de, Vīdāles J. L., Pozo, M., Medina, J.A. & Leguey, S. (1988) Formacion de sepiolita-paligorskita en lito- facies lutitico-carbonaticas en el sector de Boros-Esqui- vias (Cuenca de Madrid). Estudios Geol, 44, 718.Google Scholar
Millot, G. (1967) Signification des études récentes sur les argiles dans [’interpretation des faciés sédimentaires (y compris les series rouges). Geology, 8, 259280.Google Scholar
Millot, G., Nahon, D. Paquet, H., Ruellan, A. & Tardy, Y. (1977) L’épigénie calcaire des roches silicatees dans les encroutements carbonates en pays subaride- Antial- tas, Maroc. Sci. Géol. Bull, 30, 129152.Google Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1-128 in: Chemistry of Clays and Clay Minerals. (A.C.D. Newman, editor). Mineralo- gical Society Monograph 6, Mineralogical Society, London.Google Scholar
Paquet, H. (1983) Stability, instability and significance of attapulgite in the calcretes of mediterranean and tropical areas with marked dry season. Sci. Géol. Mem, 72, 131140.Google Scholar
Paquet, H. & Ruellan, A. (1993) Epigénie des encroûte- merits calcaires (calcretés) Coll, de L’Academie des Sciences ‘Sédimentologie et géochimie de la surface’ á la mémoire de Georges Millot, 19-39.Google Scholar
Regaya, K. (1983) Etude géologique de lad formation des limons de Matmata (Sud Tunisien). Thése 3éme cycle, Univ. Aix-Marseille III, France.Google Scholar
Singer, A. & Norrish, K. (1974) Pedogenic palygorskite occurrences in Australia. Am. Miner, 59, 508517.Google Scholar
Sanchez san Roman, F.J. & Blanco, J.A. (1986) Formacion de palygorskita asociada al flujo regional des las aguas subterraneas del borde S.O. de la Cuenca del Duero. Estud. Geol, 42, 321330.Google Scholar
Šrodon, J., Andreoli, C., Elsass, F. & Robert, M. (1990) Direct high-resolution transmission electron microscopic measurement of expandability of mixed-layer illite/ smectite in bentonite rock. Clays Clay Miner, 38, 373379.Google Scholar
Suarez, M., Armenteros, I., Navarrete, J. & Martin Pozas, J. M. (1989) El yacimiento de palygorskita de Bercimuel (Segovia). Génesis y propiedades technologicas. Studia Geologica Salmant, XXVI, 87-16.Google Scholar
Suarez, M., Flores, L., Anorbe, M., Diez, M., Navarrete, J. &Martin Pozas, J. M. (1991) Mineralogical and textural characterization of Bercimuel palygorskite (Segovia, Spain). Proc. 7th Euroclay Conf. Dresden, 1019-1023.Google Scholar
Tazaki, K., Fyfe, W.S. & Ross FIeath, G. (1986) Palygorskite formed on montmorillonite in North Pacific deep-sea sediments. Clay Sci, 6, 197216.Google Scholar
Tazaki, K., Fyfe, W.S., Tsuji, M. & Katayama, K. (1987) TEM observations of smectite to palygorskite transition in deep Pacific sediments. Appl. Clay Sci, 2, 233240.CrossRefGoogle Scholar
Tessier, D. (1984) Etude expérimental de l’organisation des materiaux argileux?. Thése Doc. INRA, Paris, France.Google Scholar
Trauth, N. (1974) Argiles évaporitiques dans la sédimentation carbonatées continentale tertiaire du bassin de Paris, de Mormoiron et de Salinelles (France). Jbel Ghassoul (Maroc). Thése Univ. Strasbourg, France. Sci. Geol. Mem. 49, 195p.Google Scholar