Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T13:19:30.758Z Has data issue: false hasContentIssue false

ESR and IR Evidence for Chromium in Kaolinites

Published online by Cambridge University Press:  09 July 2018

C. Mosser
Affiliation:
Centre de Géchimie de la Surface, 1 rue Blessig, F-67084 Strasbourg Cédex, France
S. Petit
Affiliation:
Laboratoire de Pétrologie de la Surface, URA CNRS 721, Université de Poitiers, 40 Avenue du Recteur Pineau, F-86022 Poitiers Cddex, France, and
M. Mestdagh
Affiliation:
Laboratoire de Chimie des Interfaces, Université Catholique de Louvain, Place Croix du Sud 1, 2/18 B-1348 Louvain la Neuve, Belgique

Abstract

Evidence obtained from ESR and IR studies is presented for the presence of structural Cr in two natural kaolinites (MILO and GEY) formed in an hydrothermal environment in Sonoma County, California. The XRD patterns show a greater structural disorder for GEY than for MILO, but both have the usual hexagonal shapes as shown by TEM observations. On the basis of EDX analysis of different particles, GEY, on average, appears to be richer in Cr (2.1% Cr203) than MILO (0.6% Cr203). The presence of Fe oxide particles containing some Cr, Ni and V is also indicated by EDX analysis. By FT-IR observation, the octahedral Cr 3+ position was easily detected by a well resolved spectral feature at 3586 cm -1. The adsorbed Cr 3+ kaolinite (KMRXCR) presents no band at 3586 cm -1, but two other bands situated at 3527 and 3477 cm -1. The main features of the ESR spectra of these two kaolinites are a set of resonances near geff4; a broad resonance centred near geff2 with some modulations; and a set of resonances near gcffl. The broad resonance centred near geff2 is interpreted as the free iron oxide signal with modulations due to VO 2+. The set of resonances near geff4 is similar to that observed for octahedral Fe 3+, but the position is shifted compared to that of octahedral Fe 3+. This set of resonances near geff4 is, therefore, interpreted as belonging to Cr 3+ in octahedral position. The resonances at geff1 are also interpreted as belonging to Cr 3-. Comparison with the Cr 3+ surface-adsorbed ESR signal of a Cr-saturated kaolinite (which is a broad resonance centred near geff2) strengthens the interpretation of the geff4 resonances belonging to Cr 3+ in the octahedral position. The results obtained by the combination of FT-IR and ESR spectroscopics indicate that Cr 3+ is present in the octahedral position of the MILO and GEY kaolinites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrosi, J.P. (1984) Petrologie et geochimie d’une sequence de profils lateriques cuirasses ferrugineux de la region de Diouga, Burkina Faso. These Doc. 3eme cycle, Geologie appliquee, Univ. Poitiers, France.Google Scholar
Ambrosi, J.P. & Nahon, D. (1986) Petrological and geochemical differentiation of lateritic iron crust profiles. Chem. Geol. 57, 371393.Google Scholar
Angel, B.R. & Hall, P.L. (1972) Electron spin resonance studieds of kaolins. Proc. Int. Clay Conf. Madrid, 47-60.Google Scholar
Angel, B.R. & Vincent, E.J. (1978) Electron spin resonance studies of iron oxides asociated with the surface of kaolins. Clays Clay Miner. 26,263-272.Google Scholar
Angel, B.R., Jones, J.P.E. & Hall, P.L. (1974) Electron spin resonance studies of doped synthetic kaolinites. I Clay Miner. 10, 247255.CrossRefGoogle Scholar
Angel, B.R., Cuttler, A.H., Richards, K.S. & Vincent, E.J. (1977) Synthetic kaolinites doped with Fe2+ and Fe3+ ions. Clays Clay Miner. 25, 381383.Google Scholar
Barrios, J., PlanÇon, A., Cruz, M.l. & Tchoubar, C. (1977) Qualitative and quantitative study of stacking faults in a hydrazine treated kaolinite-relationship with infrared spectra. Clays Clay Miner. 25, 422129.Google Scholar
Besnus, Y. & Rouault, R. (1973) Methode d’analyse des roches au spectrometre d’arc a lecture directe par un dispositif d’electrode rotative. Analusis, 2, 111116.Google Scholar
Bonnin, D., Muller, J.P. & Calas, G. (1982) Le fer dans les kaolins. Etude par spectrometries RPE, Mossbauer, EXAFS. Bull. Mineral. 105, 467175.Google Scholar
Brindley, G.W. (1980) Order-disorder in clay mineral structures. Pp. 125-195 in: Crystal Structures of Clay Minerals and their X-ray Identification. Monograph 5, (G.W. Brindley & G. Brown, editors). Mineralogical Society, London.Google Scholar
Brookins, D.G. (1973) Chemical and X-ray investigation of chromiferous kaolinite (“miloschite”) from The Geysers, Sonoma County, California. Clays Clay Miner. 21, 421122.Google Scholar
Cases, J.M., Lietard, O., Yvon, J. & Delon, J.F. (1982) Etudes des proprietēs cristallochimiques, morphologiques, superficielles de kaolinite desordonnees. Bull. Mineral. 105, 439—455.Google Scholar
Cuttler, A.H. (1980) The behaviour of a synthetic 57Fe-doped kaolin: Mossbauer and electron paramagnetic resonance studies. Clay Miner. 15, 429444.CrossRefGoogle Scholar
Cuttler, A.H. (1981) Further studies of a ferrous iron doped synthetic kaolin: dosimetry of X-ray induced defects. Clay Miner. 16, 6980.Google Scholar
De Endredy, A.S. (1963) Estimation of free iron oxides in soils and days by a photolytic method. Clay Miner. Bull. 29, 209217.Google Scholar
Farmer, V.C. (1974) The layers silicates. Pp. 331-365 in: The Infrared Spectra of Minerals (V.C. Farmer, editor). Mineralogical Society, London.Google Scholar
Fysh, S.A., Cashion, J.D. & Clarck, P.E. (1983) Mossbauer effect studies of iron in kaolin II. Surface iron. Clays Clay Miner. 31, 293298.Google Scholar
Gaite, J.M. & Mosser, C. (1993) Experimental and modelized electron paramagnetic resonance spectra of Cr3+ in kaolinite. J. Phys. Cordens. Matter 5, 429—4934.Google Scholar
Gritsaienko, G.S. & Grum-Grzhimailo, S.V. (1949) O khromovom galluazite iz Aidyrlinskogo mestorozdheniyana juzhnom Urale. Zapiski. Vses. Mineral. Obshchestva, 78, 6163.Google Scholar
Hall, P.L. (1980) The application of electron spin resonance spectroscopy to studies of clay minerals: I. Isomorphous substitutions and external surface properties. Clay Miner. 15, 321335.Google Scholar
Hall, P.L., Angel, B.R. & Braven, J. (1974) Electron spin resonance and related studies of lignite and ball clay from south Devon, England. Chem. Geol. 13, 97113.Google Scholar
Herbillon, A.J., Mestdagh, M.M., VielvoyeL. DerouaneE.G. (1976) Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Miner. 11, 201220.Google Scholar
Hinckiley, D.N. (1963) Variability in “cristallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays Clay Miner. 11, 229235.Google Scholar
Hogg, C.S., Melden, P.J. & Meads, R.E. (1975) Identification of iron-containing kaolinites using the Mossbauer effect. Mineral. Mag. 40, 89.Google Scholar
Jones, J.P., Angel, B.R. & Hall, P.L. (1974) Electron spin resonance studies of dopes synthetic kaolinite. Clay Miner. 10, 257269.Google Scholar
McBride, M.B. (1979) Mobility and reactions of V02+ on hydrated smectite surfaces. Clays Clay Miner. 27,91-96.Google Scholar
McBride, M.B. & Mortland, M.M. (1974) Copper(II) interactions with montmorillonites: evidence from physical methods. Soil Sci. Soc. Amer. Proc. 38, 408414.Google Scholar
Maksimovic, Z. & Brindley, G.W. (1980) Hydrothermal alteration of a serpentinite near Takovo, Yugoslavia, to chromium-bearing illite/smectite, kaolinite, tosudite, and halloysite. Clays Clay Miner 28, 295302.Google Scholar
Maksimovic, Z. & Crnkovic, B. (1968) Halloysite and kaolinite formed through the alteration of ultramafic rocks. Trans. Int. Geol. Congress, Prague, 14, 95105.Google Scholar
Maksimovic, Z. & Dangic, A. (1991) Clay minerals—indicators of hydrothermal alteration of ultramafic rocks. Proc. 7th Euroclay Conf., Dresden, 731-735.Google Scholar
Maksimovic, Z. & White, J.L. (1973) Infrared study of chromium-bearing halloysites. Proc. Int. Clay Conf., Madrid, 6173.Google Scholar
Maksimovic, Z., White, J.L. & Logar, M. (1981) Chromium-bearing dickite and chromium-bearing kaolinite from Teslic, Yugoslavia. Clays Clay Miner. 29, 213218.Google Scholar
Matzat, E. (1978) Chromium crystal chemistry. 24-A-l, in: Handbook of Geochemistry (K.H. Wedepohl, editor). Springer Verlag, Berlin.Google Scholar
Meads, R.E. & Malden, P.J. (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Miner 10, 313345.Google Scholar
Mestdagh, M.M., Herbillon, A., Rodrique, L. & Rouxhet, P.G. (1982) Evaluation du role du fer structural sur la cristallinitē des kaolinites. Bull. Mineral. 105, 457466.Google Scholar
Mestdagh, M.M., Vielvoye, L. & Herbillon, A. (1980) Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content. Clay Miner. 15, 113.CrossRefGoogle Scholar
Monsef-Mirzai, P. & McWhinnie, W.R. (1982) Spectroscopic studies of metal ions sorbed onto kaolinite. Inorg. Chim. Acta 58, 142148.CrossRefGoogle Scholar
Muller, J.P. & Čalas, G. (1989) Tracing kaolinites through their defect centers: kaolinite paragenesis in a laterite (Cameroon). Econ. Geol. 84, 694707.Google Scholar
Muller, J.P., Clozel, B., Ildefonse, P. & Čalas, G. (1992). Radiation-induced defects in kaolinites: indirect assessment of radionuclide migration in the geosphere. Applied Geochem. Suppl. Issue 1, 205216.Google Scholar
Muller, J.P., Ildefonse, P. & Čalas, G. (1990) Paramagnetic defect centers in hydrothermal kaolinite from an altered tuff in the Nopal uranium deposit, Chihuahua, Mexico. Clays Clay Miner. 38, 600608.CrossRefGoogle Scholar
Olivier, D., Vedrine, J.C. & Pezerat, H. (1975) Application de la resonance paramagnetique electronique ā la localisation du Fe3+ dans les smectites. Bull. Groupe franļ. Argiles, XXVII, 153165.Google Scholar
Pampuch, R. (1966) Infrared study of thermal transformations of kaolinite and the structure of metakaolin. Prace Mineralogiczne, 6, 5370.Google Scholar
Petit, A. & Decarreau, A. (1990) Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites. Clay Miner. 25, 181196.Google Scholar
Pinnavaia, T.J., Hall, P.L., Cady, S.S. & Mortland, M.M. (1974) Aromatic radical cation formation on the intracrystal surfaces of transition metal layer lattice silicates. J. Phys. Chem. 78, 994999.Google Scholar
Samuel, J. & Rouault, R. (1983) Les methodes d’analyse des materiaux geologiques pratiques au Laboratoire d’Analyses Spectrometriques. Unpub. Notes Techniques Inst. Geol 16, ULP Strasbourg & Centre Sedim. Geochim. Surface, CNRS Strasbourg.Google Scholar
Samuel, J., Rouault, R. & Besnus, Y. (1985) Analyse multiēlēmentaire standardisee des materiaux geologiques en spectrometrie d’emission par plasma a couplage inductif. Analusis, 13, 312317.Google Scholar
Singh, B. & Gilkes, R.J. (1991) Weathering of a chromian muscovite to kaolinite. Clays Clay Miner. 39, 571579.Google Scholar
Wherry, E.T. & Brown, G.V. (1916) An American occurrence of miloschite. Am. Miner. 6367.Google Scholar