Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-02T21:18:14.150Z Has data issue: false hasContentIssue false

Electron spin resonance study of donor-acceptor sites in Zr-montmorillonite

Published online by Cambridge University Press:  09 July 2018

J. V. Zanchetta
Affiliation:
Université de Montpellier II Sciences et Techniques du Languedoc, Laboratoire de Physicochimie des Matériaux, Equipe de Chimie Physique (URA D0407 CNRS), Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
A. Matrod-Bashi
Affiliation:
Université de Montpellier II Sciences et Techniques du Languedoc, Laboratoire de Physicochimie des Matériaux, Equipe de Chimie Physique (URA D0407 CNRS), Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
F. Figueras
Affiliation:
Université de Montpellier II Sciences et Techniques du Languedoc, Laboratoire de Physicochimie des Matériaux, Equipe de Chimie Physique (URA D0407 CNRS), Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

Abstract

The charge transfer process that occurs in two samples of Wyoming montmorillonite of different grain size pillared with Zr by interaction with perylene (Pe) and tetracyanoethylene (TCNE) has been studied. These smectites are strongly affected by the exchange of Zr and appear to be strong electron acceptors and weak donors. The ESR results show that their ability to form charge transfer radicals is related to the details of preparation, which most probably control the accessibility of Pe and TCNE to the internal surface.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bandiera, J., Ben Taarit, Y. & Naccache, C. (1969) Effets de la decomposition thermique sur les proprietes acides et oxydantes d'une zeolithe NaNH4Y. Bull Soc. Chim. Fr., 10, 3419–3421.Google Scholar
Basset, J.M., Naccache, C., Mathieu, M.V. & Prettre, M. (1969) Proprietes des alumines chlorees. IV: Etude de leur caractere oxydo-reducteur par RPE. J. Chim. Phys., 66, 1522–1527.Google Scholar
Bonneau, L. & Pezerat, H. (1983) Etudes des sites donneurs et accepteurs d'un électron en surface des amiantes. J. Chim. Phys., 80, 275–280.Google Scholar
Ben Taarit, Y., Mathieu, M.V. & Naccache, C. (1971) Acidic and oxidizing properties of rare earth exchanged Y zeolites. Adv. Chem. Ser., 102, 362–373.Google Scholar
Ben Taarit, Y., Naccache, C. & Imelik, B. (1973) Etude par RPE et par spectrometrie infrarouge de Tadsorption de NO sur zeolithes de types NH4Y et NH4Z. J. Chim. Phys., 70, 728–732.Google Scholar
Che, M., Naccache, C. & Imelik, B. (1972) Electron spin resonance studies on titanium dioxide and magnesium oxide—Electron donor properties. J. CataL, 24, 328–335.CrossRefGoogle Scholar
Figueras, F., Mattrod-Bashi, A., Fetter, G., Thrierr, A. & Zanchetta, J.V. (1989) Preparation and thermal properties of Zr-intercalated clays. J. CataL, 119, 91–96.Google Scholar
Flockhart, B.D., McLoughun, L. & Pink, R.C. (1972) Evidence for the redox nature of zeolite catalysts. J. CataL, 25, 305–313.Google Scholar
Freilander, H.Z., Saldik, J. & Frink, C.R. (1963) Electron spin resonance in various clay minerals. Nature,, 199, 61–62.Google Scholar
Kodratoff, Y., Naccache, C. & Imelik, B. (1968) Le role de Toxygene dans la formation de cations radicalaires a la surface des silices-alumines. J. Chim. Phys., 65, 562–566.Google Scholar
Komusinski, K., Stoch, L. & Dubiel, S.M. (1981) Application of electron paramagnetic resonance and Mossbauer spectroscopy in the investigation of kaolinite-group minerals. Clays Clay Miner., 29, 123–130.Google Scholar
Mattrod-Bashi, A. (1985) Preparation et proprietes physicochimiques d'une montmorillonite zirconium. Thesis, Montpellier, France.Google Scholar
Naccache, C. & Ben Taarit, Y. (1971) Oxidizing and acidic properties of copper-exchanged Y zeolite. J. CataL, 22, 171–181.CrossRefGoogle Scholar
Naccache, C., Bandiera, J. & Dufaux, M. (1972) An electron spin resonance study of cation radicals on the surface of MoO3-A12O3 and MoO3-SiO2 catalysts. J. CataL, 25, 334–341.CrossRefGoogle Scholar
Naccache, C., Kodratoff, Y., Pink, R. & Imelik, B. (1966) Etude des proprietes superficielles des alumines: formation de radicaux negatifs de tetracyanoethylene sur la surface des alumines gamma et eta. J. Chim. Phys., 63, 341–344.Google Scholar
Olivier, D., Vedrine, J.C. & Pezerat, H. (1975) Application de la resonance paramagnétique electronique a la localisation du Fe dans les smectites. Bull. Groupe Franqais des Argiles, 27, 153–165.Google Scholar
Pinnavaia, T.J. (1981) Electron spin resonance studies of clay minerals. Pp. 139161 in: Advanced Techniques for Clay Mineral Analysis(Fripiat, J. J., editor). Elsevier, New York.Google Scholar
Tanabe, K. (1970) In: Solid Acids and Bases, Kodansha, ed., Tokyo.Google Scholar
Terenin, A., Barachevsky, V., Kotov, E. & Kolmogorov, V. (1963) Spectral investigation of molecular ionisation on the surface of aluminosilicates. Spectrochimica Acta,, 191, 1797–1808.Google Scholar
Tichit, D., Fajula, F., Figueras, F., Ducourant, B., Mascherpa, G., BousquetJ. & Gueguen, C. (1988) Sintering of montmorillonites pillared by hydroxyaluminum species. Clays Clay Miner., 36, 369–375.CrossRefGoogle Scholar
Van Damme, H., Bergaya, F. & Gatineau, L. (1987) Contraintes structurales sur la reactivite dans les argiles et les solides trés divisés. J. Chim. Phys., 84, 1075–1082.Google Scholar
Yamanaka, S. & Brindley, G.W. (1979) High surface area solids obtained by reaction of montmorillonite with zirconyl chloride. Clays Clay Miner., 27, 119–124.CrossRefGoogle Scholar