Article contents
Dissolution experiments of Na- and Ca-montmorillonite in groundwater simulants under anaerobic conditions
Published online by Cambridge University Press: 09 July 2018
Abstract
The effects of simulant groundwater composition, pH and temperature on the dissolution and alteration of Na- and Ca-montmorillonite have been studied. Prior to the experiments, Wyoming type Na-montmorillonite, Swy-2, was purified to decrease the amount of accessory minerals. For Ca-montmorillonite experiments, the interlayer cation Na+ of purified Swy-2 was exchanged with Ca2+. The batch experiments were conducted with the purified montmorillonites in simulated fresh and saline waters at 25°C and 60°C under anaerobic conditions in an Ar atmosphere. The concentrations of Si, Al, Fe and Mg were analysed from ultra-filtered solution samples with High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS) as a function of dissolution time. The pH evolution was also measured. The solid smectite phases were analysed with X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). XRD analyses indicated that the nature of the smectite mineral did not change over 140 days. However, the experimental conditions, more or less, modified the structure (e.g. the layer stacking of montmorilllonite; the partial dissolution of the smectite), which cannot be detected by XRD but was evidenced by chemical data, and can be considered as a possible contributor to the stacking faults of the montmorillonite. The log rates (mol g–1 s–1), based on the dissolved amount of Si, varied between –10.64 and –12.13 depending on the experimental conditions.
- Type
- Research Article
- Information
- Creative Commons
- Copyright © The Mineralogical Society of Great Britain and Ireland 2013 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- Copyright © The Mineralogical Society of Great Britain and Ireland 2013
References
- 5
- Cited by