Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T01:01:21.883Z Has data issue: false hasContentIssue false

Differential behaviour of Fe(III)- and Cu(II)-montmorillonite with aniline: I. Suspensions with constant solid: liquid ratio

Published online by Cambridge University Press:  09 July 2018

A. Moreale
Affiliation:
Groupe de Physico-Chimie Minérale et de Catalyse, Laboratoire de Chimie Organo-Minérale, Université Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
P. Cloos
Affiliation:
Groupe de Physico-Chimie Minérale et de Catalyse, Laboratoire de Chimie Organo-Minérale, Université Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
C. Badot
Affiliation:
Groupe de Physico-Chimie Minérale et de Catalyse, Laboratoire de Chimie Organo-Minérale, Université Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium

Abstract

Aniline, adsorbed from aqueous solution in 1% (w/v) clay suspensions, forms coloured complexes and polymerizes on Fe(III)- and Cu(II)-montmorillonite. As evidenced by the adsorption isotherms, and the coloration and spectroscopic (IR, ESR) characteristics of the organo-clay associations formed, the conditions under which these reactions take place and the mechanisms involved differ according to the exchange cation. Fe(III) interacts with the π electrons of the aromatic ring to give rise to radical cations or so-called type II complexes, provided the aniline concentration does not exceed 500 p.p.m. With Cu(II). an aniline concentration above 500 p.p.m. is required and the reaction occurs at the amine group, proceeding through coordination followed by free-radical formation.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cloos, P., Badot, C. & Herbillon, A. (1981) Interlayer formation of humin in smectites. Nature 289, 391393.Google Scholar
Cloos, P., Moreale, A., Broers, C. & Badot, C. (1979) Adsorption and oxidation of aniline and p-chloroaniline by montmorillonite. Clay Miner. 14, 307321.Google Scholar
Fenn, D.B., Mortland, M.M. & Pinnavaia, T.J. (1973) The chemisorption of anisole on Cu(II) hectorite. Clays Clay Miner. 21, 315322.CrossRefGoogle Scholar
Giles, C.H., MacEwan, T.H., Nakhwa, S.N. & Smith, D. (1960) Studies in adsorption: 11. A system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 39733993.Google Scholar
Heller, L. & Yariv, S. (1969) Sorption of some anilines by Mn-, Co-, Ni-, Cu-, Zn- and Cd-montmorillonite. Proc. Int. Clay Conf.. Tokyo 1, 741755.Google Scholar
Moreale, A. & Van Bladel, R. (1979) Adsorption of herbicide-derived anilines in dilute aqueous montmorillonite suspensions. Clay Miner. 14, 111.Google Scholar
Mortland, M.M. & Halloran, L.J. (1976) Polymerization of aromatic molecules on smectite. Soil Sci. Soc. Am. J. 40, 367370.CrossRefGoogle Scholar
Pinnavaia, T.J., Hall, P.L., Cady, S.S. & Mortland, M.M. (1974) Aromatic radical cation formation on the intracrystal surfaces of transition metal layer lattice silicates. J. phys. Chem. 78, 994999.CrossRefGoogle Scholar
Rupert, J.P. (1973) Electron spin resonance spectra of interlamellar copper(II)-arene complexes on montmorillonite. J. phys. Chem. 77, 784790.Google Scholar
Stoessel, F., Guth, J.L. & Wey, R. (1977) Polymérisation de benzéne en polyparaphényléne dans une montmorillonite cuivrique. Clay Miner. 12, 255259.Google Scholar
Yariv, S., Heller, L. & Kaufherr, N. (1969) Effect of acidity in montmorillonite interlayers on the sorption of aniline derivatives. Clays Clay Miner. 17, 301308.Google Scholar
Yariv, S., Heller, L., Sofer, Z. & Bodenheimer, W. (1968) Sorption of aniline by montmorillonite. Israël J. Chem. 6, 741756.Google Scholar