Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T03:33:20.954Z Has data issue: false hasContentIssue false

Determination of the cation exchange capacity of clays with copper complexes revisited

Published online by Cambridge University Press:  09 July 2018

L. Ammann
Affiliation:
Institute of Inorganic Chemistry, University of Kiel, D-24098 Kiel, Germany
F. Bergaya
Affiliation:
CRMD-CNRS-Université d'Orléans, 1b, rue de la Férollerie, F-45071 Orléans Cedex 02, France
G. Lagaly*
Affiliation:
Institute of Inorganic Chemistry, University of Kiel, D-24098 Kiel, Germany

Abstract

The determination of the cation exchange capacity (CEC) of clays by exchange with the cationic copper complexes [Cu(en)2]2+ and [Cu(trien)]2+ is revisited. The procedures reported by Bergaya & Vayer (1997) and Meier & Kahr (1999) are modified slightly. The concentration of the copper complexes in the equilibrium solutions is measured by spectral photometry. Correct CEC values of the [Cu(en)2]2+ exchange are only obtained when a buffer (‘tris’, tris (hydroxymethyl) aminomethane, pH = 8) is added to the equilibrium solution after separation of the clay, because the molar extinction coefficient of this complex depends on the pH of the solution. A standard procedure is recommended as a reference method. In most cases, tris addition is not needed for the determination with [Cu(trien)]2+ cations. Nevertheless, tris addition is recommended in the standard procedure. Determination of CEC for 40 samples (kaolins, ‘common clays’, bentonites, montmorillonites and beidellite) shows a good agreement between measurements using [Cu(en)2]2+ and [Cu(trien)]2+ cations and with results by the ammonium acetate method.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammann, L. (2003) Cation exchange and adsorption on clays and clay minerals. Thesis, University of Kiel, Germany.Google Scholar
Anderson, S.J. & Sposito, G. (1991) Cesium adsorption method for measuring accessible structural surface charge. Soil Science Society of America Journal, 55, 1569–1576.Google Scholar
Avena, M.J. & de Pauli, C.P. (1998) Proton adsorption and electrokinetics of an Argentinian montmorillonite. Journal of Colloid and Interface Science, 202, 195–204.Google Scholar
Avena, M.J., Valenti, L.E., Pfaffen, V. & de Pauli, C.P. (2001) Methylene blue dimerization does not interfere in surface-area measurements of kaolinite and soils. Clays and Clay Minerals, 49, 168–173.Google Scholar
Bain, D.C. & Smith, B.F.L. (1987) Chemical Analysis. Pp. 248–274 in: A Handbook of Determinative Methods in Clay Mineralogy (Wilson, M.J., editor). Blackie, Glasgow and London.Google Scholar
Barrer, R.M. (1989) Shape-selective sorbents based on clay minerals: a review. Clays and Clay Minerals, 37, 385–395.Google Scholar
Behrens, H. (1996) Perkolationsversuche zur Untersuchung des Einflusses organischer Schadstofflösungen und Sickerwösseer auf tonige Deponieabdichtungen. Verlag Dr. Köster, Berlin.Google Scholar
Benna, M., Kbir-Ariguib, N., Magnin, A. & Bergaya, F. (1999) Effect of pH on rheological properties of purified sodium bentonite suspensions. Journal of Colloid and Interface Science, 218, 442–455.Google Scholar
Bergaya, F. (1978) Organisation de molécules polaires adsorbés par la montmorillonite. Theèse d'Etat, Université d'Orléans, France.Google Scholar
Bergaya, F. & Vayer, M. (1997) CEC of clays: measurement by adsorption of a copper ethylenediamine complex. Applied Clay Science, 12, 275–280.Google Scholar
Borden, D. & Giese, R.F. (2001) Baseline studies of The Clay Minerals Society source clays: cation exchange capacity measurements by the ammonia-electrode method. Clays and Clay Minerals, 49, 444–445.Google Scholar
Brindley, G.W. & Thompson, T.D. (1970) Methylene blue absorption by montmorillonites. Determination of surface areas and exchange capacities with different initial cation saturations (clay organic studies XIX). Israel Journal of Chemistry, 8, 409–415.CrossRefGoogle Scholar
Burba, J.L. & McAtee, J.L. Jr. (1977) The orientation and interaction of ethylenediamine copper (II) with montmorillonite. Clays and Clay Minerals, 25, 113–118.CrossRefGoogle Scholar
Chan, D.Y.C., Pashley, R.M. & Quirk, J.P. (1984) Surface potentials from co-ion exclusion measurements on homoionic montmorillonite and illite. Clays and Clay Minerals, 32, 131–138.Google Scholar
Chapman, H.D. (1965) Cation Exchange Capacity. Pp. 891–901 in: Methods of Soil Analysis (Black, C.A., editor). American Society of Agronomy, Madison, Wisconsin.Google Scholar
Chhabra, R., Pleysier, J. & Cremers, A. (1975) The measurement of the cation exchange capacity and exchangeable cations in soils: A new method. Pp. 439–449 in: Proceedings of the International Clay Conference Mexico, 1975 (Bailey, S.W., editor). Applied Publishing Ltd. Wilmette, USA.Google Scholar
Chorover, J. & Sposito, G. (1995) Surface charge characteristics of kaolinite tropical soils. Geochimica et Cosmochimica Acta, 59, 875–884.CrossRefGoogle Scholar
Dohrmann, R. (1997) KationenaustauschkapazitaÈt von Tonen. Bewertung bisheriger Analysenverfahren und Vorstellung einer neuen und exakten Silber- Thioharnstoff-Methode. Thesis, Aachener Geowissenschaftliche Beiträge 26, Aachen, Germany.Google Scholar
Heller-Kallai, L. (2001) Protonation-deprotonation of dioctahedral smectites. Applied Clay Science, 20, 27–38.CrossRefGoogle Scholar
Inoue, A. & Minato, H. (1979) Ca-K exchange reaction and interstratification in montmorillonite. Clays and Clay Minerals, 27, 393–401.Google Scholar
Janek, M., Komadel, P. & Lagaly, G. (1997) Effect of autotransformation on the layer charge of smectites determined by the alkylammonium method. Clay Minerals, 32, 623–632.CrossRefGoogle Scholar
Jasmund, K. & Lagaly, G. (editors) (1993) Tonminerale und Tone. Struktur, Eigenschaften, Anwendung und Einsatz in Industrie und Umwelt. Steinkopff Verlag, Darmstadt, Germany.Google Scholar
Kahr, G. & Madsen, F.T. (1995) Determination of the cation exchange capacity and the surface area ofbentonite, illite, and kaolinite by methylene blue adsorption. Applied Clay Science, 9, 327–336.Google Scholar
Keren, R. & Sparks, D.L. (1995) The role of edge surfaces in flocculation of 2:1 clay minerals. Soil Science Society of America Journal, 59, 430–435.CrossRefGoogle Scholar
Komadel, P. (2003) Chemically modified smectites. Clay Minerals, 38, 127–138.Google Scholar
Lagaly, G. (1981) Characterization of clays by organic compounds. Clay Minerals, 16, 1–21.Google Scholar
Lagaly, G. (1989) Principles of flow of kaolin and bentonite dispersions. Applied Clay Science, 4, 105–123.CrossRefGoogle Scholar
Lagaly, G. (1994a) Bentonites: adsorbents of toxic substances. Progress in Colloid and Polymer Science, 95, 61–72.Google Scholar
Lagaly, G. (1994b) Layer charge determination by alkylammonium ions. Pp. 1–46 in: Charge Characteristics of 2:1 Clay Minerals (Mermut, A., editor). CMS workshop lectures, vol. 6, The Clay Minerals Society, Boulder, Colorado.Google Scholar
Lagaly, G., Schulz, O. & Zimehl, R. (1997) Dispersionen und Emulsionen. Eine Einführung in die Kolloidik feinverteilter Stoffe einschlieβlich der Tonminerale. Mit einem historischen Beitrag Über Kolloidwissenschaftler von Klaus Beneke. Steinkopff Verlag, Darmstadt, Germany.Google Scholar
Lee, J.F., Mortland, M.M., Chiou, C.T., Kile, D.E. & Boyd, S.A. (1990) Adsorption of benzene, toluene, and xylene by two tetramethylammonium-smectites having different charge densities. Clays and Clay Minerals, 38, 113–120.CrossRefGoogle Scholar
Mantin, I. & Glaeser, R. (1960) Fixation des ions cobaltihexamine par les montmorillonites acides. Bulletin du Groupe Français des Argiles, 12, 83–88.Google Scholar
Meier, L.P. & Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with tri- ethylenetetramine and tetraethylenepentamine. Clays and Clay Minerals, 47, 386–388.Google Scholar
Nennemann, A., Ammann, L., Mecking, O., Permien, T. & Lagaly, G. (2000) Specific surface area by co-ion exclusion measurements: influence of experimental conditions. Scripta Facultatis Scientiae Naturarum. Universitas Masaryk. Brun., Geology, Brno 2000, vol. 28–29, 37–42.Google Scholar
Orsini, L. & Remy, J.C. (1976) Utilisation du chlorure de cobaltihexamine pour la détermination simultanée de la capacite d'échange et des bases échangeables des sols. Science du sol, 4, 269–275.Google Scholar
Peigneur, P., Maes, A. & Cremers, A. (1975) Heterogeneity of charge density distribution in montmorillonite as inferred from cobalt adsorption. Clays and Clay Minerals, 23, 71–75.Google Scholar
Permien, T. & Lagaly, G. (1994) The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds III. The effect of alcohols on the coagulation of sodium montmorillonite. Colloid & Polymer Science, 272, 1306–1312.Google Scholar
Permien, T. & Lagaly, G. (1995) The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds V. Bentonite and sodium montmorillonite and surfactants. Clays and Clay Minerals, 43, 229–236.CrossRefGoogle Scholar
Pleysier, J. & Cremers, A. (1975) Stability of silver- thiourea complexes in montmorillonite clay. Faraday Transactions, 71, 256–264.Google Scholar
Reichenbach, H. Graf von (1966) Anomalien des Kationenaustausches bei Vermiculiten. Zeitschrift fuÈr PflanzenernaÈhrung und Bodenkunde, 113, 203–212.Google Scholar
Reichenbach, H. Graf von (1968) Cation exchange in the interlayers of expansible layer silicates. Clay Minerals, 7, 331–341.Google Scholar
Rhodes, C.N. & Brown, D.R. (1994) Rapid determination of the cation exchange capacity of clays using Co(II). Clay Minerals, 29, 799–801.Google Scholar
Rytwo, G., Serban, C., Nir, S. & Margulies, L. (1991) Use of methylene blue and crystal violet for determination of exchangeable cations in montmorillonite. Clays and Clay Minerals, 39, 551–555.Google Scholar
Schroth, B.K. & Sposito, G. (1997) Surface charge properties of kaolinite. Clays and Clay Minerals, 45, 85–91.Google Scholar
Sposito, G., Holtzclaw, K.M., Charlet, L., Jouany, C. & Page, A.L. (1983) Sodium-calcium and sodium- magnesium exchange on Wyoming bentonite in perchlorate and chloride background ionic media. Soil Science Society of America Journal, 47, 51–56.Google Scholar
Thomas, F., Micho, L.J., Vantelon, D., Montargès, E., Prélot, B., Cruchaudet, M. & Delon, J.F. (1999) Layer charge and electrophoretic mobility of smectites. Colloids and Surfaces A, 159, 351–358.Google Scholar
Tournassat, C., Greneche, J.-M., Tisserand, D. & Charlet, L. (2004a) The titration of clay minerals I. Discontinuous backtitration technique combinedwith CEC measurements. Journal of Colloid and Interface Science, 273, 224–233.Google Scholar
Tournassat, C., Ferrage, E., Poinsignon, C. & Charlet, L. (2004b) The titration of clay minerals II. Structure- based model and implications for clay reactivity. Journal of Colloid and Interface Science, 273, 234–246.Google Scholar
Tributh, H. & Lagaly, G. (1986) Aufbereitung und Identifizierung von Boden- und Lagerstättentonen. GIT Fachzeitschrift für das Laboratorium, 30, 524–529.Google Scholar
van den Hul, H.J. & Lyklema, J. (1967) Determination of specific surface areas of dispersed materials by negative adsorption. Journal of Colloid and Interface Science, 23, 500–508.CrossRefGoogle Scholar
van Olphen, H. & Fripiat, J.J. (1979) Data Handbook for Clay Materials and other Non-metallic Minerals. Pergamon Press, Oxford, UK, pp. 195–201.Google Scholar
Verburg, K. & Baveye, P. (1995) Effect of cation exchange hysteresis on a mixing procedure used in the study of clay suspensions. Clays and Clay Minerals, 43, 637–640.Google Scholar
Wanner, H., Albinsson, Y., Karnland, O., Wieland, E., Wersin, P. & Charlet, L. (1994) The acid/base chemistry of montmorillonite. Radiochimica Acta, 66/67, 157–162.Google Scholar
Weiss, A. (1958a) Über das Kationenaustauschvermögen der Tonminerale II. Der Kationenaustausch bei den Mineralen der Glimmer-, Vermiculit- und Montmorillonitgruppe. Zeitschrift anorganische und allgemeine Chemie, 297, 257–286.Google Scholar
Weiss, A. (1958b) Über das Kationenaustauschvermögen der Tonminerale I. Vergleich der Untersuchungs- methoden. Zeitschrift anorganische und allgemeine Chemie, 297, 232–256.Google Scholar
Weiss, A. (1958c) Über äquimolaren Kationenaustausch bei niedrig geladenen Ionenaustauschern. Kolloid- Zeitschrift, 158, 22–28.Google Scholar